
A GENERIC OPEN SOURCE

COMPUTATIONAL MATERIALS

EMPOWERED WITH

DFTB+ SIESTA

WINDOWS VERSION

Dr. Krishna Mohan

Mar Baselios College of Engineering and Technology, Nalanchira, Trivandrum,
Kerala

Dr. Kapil Gupta

Indo-Korea Science and Technology Centre, 17/1, Bellary Rd, Yashoda Nagar,
Yelahanka, Bengaluru, Karnataka

OURCE MODELING PLATFORM FOR

ATERIALS SCIENCE AND CHEMISTRY

MPOWERED WITH

SIESTA ASE OPENMD

INDOWS VERSION 2.1 MANUAL

Dr. Krishna Mohan G P Rahul Sunil

Mar Baselios College of Engineering and Technology, Nalanchira, Trivandrum,
Kerala-695015, India.

Dr. Kapil Gupta Dr. Seung-Cheol Lee

Korea Science and Technology Centre, 17/1, Bellary Rd, Yashoda Nagar,
Bengaluru, Karnataka-560064, India.

2

TABLE OF CONTENTS

1. Introduction

a. DFTB+

b. SIESTA

c. ASE

d. OpenMD

2. DFTB+ Calculations

3. Modeling With Siesta

4. OpenMD Simulations

5. Python Scripting With ASE

6. Tools of DJMol

7. Architecture of the Program

8. Software Usage

a. UV-Visible Spectrum of Silver Nanocluster using DFTB+

b. Frontier Orbitals of C60 Calculated with Siesta

c. OpenMD MD Simulation of Gold nanoparticle

d. ASE simulation of an adatom diffusion

9. Appendices

 a. Python Scripting For DJMol Applications

 b. Installation of Python and Numpy

 c. Windows Subsystem Linux in DJMol

 d. Saved Data

 e. Demonstration Videos

 f. Compiling Installation of DJMol and Add-Ons

 g. Forthcoming Features

3

4

1

 INTRODUCTION

DJMol is an ongoing open source (licensed with GPL v3 or later) ‘Modeling Platform’
project and it is architectured for performing various simulations in computational
materials science / chemistry. It is a free, object-oriented software developed by IKST,
(Indo-Korea Science and Technology Centre, 17/1, Bellary Rd, Yashoda Nagar, Yelahanka,
Bengaluru, Karnataka 560064), Bangalore.

In its core level, DJMol is integrated with widely accepted and open source (GPL/LGPL)
computational software, such as,

DFTB+ (University of Bremen, Germany), the default calculator of DJMol

Atomic Simulation Environment (ASE, Technical University of Denmark)

SIESTA (Institut de Ciencia de Materials de Barcelona (ICMAB), Spain)

OpenMD (University of Notre Dame., USA).

5

The main target of this software is the researchers (including experimentalists) and
academicians and industrial researchers. In addition to this, a site,
https://sites.google.com/view/djmolplatform is created for more technical details, updates
and demonstration videos/notes etc. The code-development resources are recently
included in its official site, www.djmol.info.

As mentioned before, the software is integrated with DFTB+ (as its default calculator), and
Siesta (for higher level DFT calculations), along with ASE and OpenMD,. Hence a short
review on these packages is added for a quick-reference.

Computational Tools

Here, a short overview of the four main components of the platform is described.

DFTB+: DFTB (Density functional tight binding) method is an electronic structure method
which is specially designed to model large molecular/crystal/nano-systems. The origin of
this method is routed in DFT itself, which is, arguably, the most popular ab initio method in
computational materials science or in quantum chemistry. It is developed in 80’s and it has
been introduced into the computational chemistry area mainly by work of Prof. Helmut
Eschrig, Prof. Gotthard Seifert, and Prof. Thomas Frauenheim et. al. Since it uses DFT
parameters, DFTB is also known as approximate DFT method.

This method uses atomic parameters (as it is stored in the SK file set, a text file) which are
generated from highly accurate atomic DFT calculations using PBE functional. It also
consists of diatomic repulsive potentials from B3LYP functional. Note that DFTB+ uses
minimal valence basis set (numerical Slater type AOs) and one has to explicitly specify a
particular SK data file for a given calculation.

A list of SK file set list is given below (see, www.dftb.org), which is by default, added in the
DJMol suite. Other SK file which are not included (such as, <3ob:freq> set which requires
<3ob>) should manually incorporate into their input scripts (it is freely available); For more
details, see:

https://www.dftbplus.org/ and
https://www.dftb.org/parameters/download/

6

Table 1: Set of common SK data set

SIESTA: Spanish Initiative for Electronic Simulations with Thousands of Atoms is a fast
(since it uses linear scaling DFT methods) density functional theoretical code which uses
pseudopotentials. It can handle molecular as well as extended systems (metals, polymers,
defects in the metals, surfaces etc.) It is a free code and for more details see:
https://departments.icmab.es/leem/siesta. And routinely it can be used to predict:

• Total and partial energies.

• Atomic forces.

• Stress tensor.

• Electric dipole moment.

• Atomic, orbital and bond populations (Mulliken).

• Electron density.

• Geometry relaxation, fixed or variable cell.

• Constant-temperature molecular dynamics (Nose thermostat).

• Variable cell dynamics (Parrinello-Rahman).

• Spin polarized calculations (collinear or not).

• k-sampling of the Brillouin zone.

7

• Local and orbital-projected density of states.

• COOP and COHP curves for chemical bonding analysis.

• Dielectric polarization.

• Vibrations (phonons).

• Band structure.

Note that at present TranSiesta (electron transport module) is not supported by DJMol

Since Siesta uses Numerical Atomic Orbital (i.e. localized basis set) as its basis, some
familiarity with these sets are highly appreciated. Note that a user can give ‘Basis set’
information to Siesta in two different ways. The most simple method is to provide a
‘keyword’of the basis set. See the next table for its details:

Table 2: A set of common basis set in Siesta

Single-
Zeta

Double-
Zeta

Triple-Zeta

Single-Zeta

Polarized

Double-Zeta

Polarized

Triple-Zeta

Polarized

Triple-
Zeta

Double-

Polarized

SZ

DZ

TZ

SZP

DZP

TZP

TZDP

However, for advanced calculations a user can also give the basis set data explicitly. Refer
Siesta manual for its description.

Apart from the basis set, one should also select an appropriate pseudopotential (PP). For
more details, see:

[1]https://departments.icmab.es/leem/siesta/Pseudopotentials/index.html or,

[2]https://departments.icmab.es/leem/siesta/Databases/Pseudopotentials/periodictable-
gga-abinit.html

8

The first link redirects to ATOM program which can be used to generate PP for elements
within the GGA/LDA functionals. The second link gives a database of PP which was
converted from the Abinit PP. Note that choosing PP is a crucial step in Siesta calculation so
a user must be Very Careful at this step.

Note: By default, DJMol use PP from the Second link [2].

Figure 1.1: The pseudopotentials of Abinit which is converted for Siesta (figure courtesy:
ICMAB)

A note on Functionals: In Siesta you can specify either LDA or GGA type functionals in a
<.fdf> input file. For example, see below for a part of the <fdf> file, which define
functionals :

Table 3: Specefication of functional in Siesta FDF file.

…

XC.functional LDA # Exchange-correlation functional (GGA can be also used)

XC.authors CA # Particular parametrization of xc func.

SpinPolarized .false. # Spin unpolarized calculation

9

...

Table 4: Set of choice of XC.authors (with its type) variables.

 CA (equivalent to PZ)

 PW92

 PW91

 PBE

 revPBE

 RPBE

 WC

 AM05

 PBEsol

 PBEJsJrLO

 BLYP (equivalent to LYP)

 DRSLL (equivalent to DF1)

 LMKLL (equivalent to DF2)

 KBM

 C09

 BH

 VV

 A LDA type

 LDA

 GGA

 GGA

 Modified GGA-PBE

 Modified GGA-PBE

 Modified GGA-PBE

 Modified GGA-PBE

 Modified GGA-PBE

 GGA-PBE

 GGA

 van der Waals density functional (vdW-DF)

 vdW-DF functional

 vdW-DF functional

 vdW-DF functional

 vdW-DF functional

 vdW-DF functional

For a complete specification on <fdf> input format please read the Siesta Manual (v 4.0 or
greater). The DJMol, is currently equipped with a SIESTA 4.1 version (with OpenMP
support) and a number of its pre - as well as post-processing tools.

ASE: Atomic Simulation Environment - is a Python based LGPL library which comprises a
variety of post processing tools or methods. A general outline of ASE is following (block
diagram courtesy: Dr. A H Larsen)

Figure 1.2: Different modules in ASE. Interface denotes the DJMol platform.

One should note that to use ASE, a minimum
language (version 3.x) is a mandate. See Appendix
programming. ASE’s input should written in an object
the input is highly flexible and it can be used to perform a series of jobs, by using, say, a
for-loop. Another advantage is, it can be effectively coupled with other python base
libraries such as NumPy, Matplotlib etc. to create different types of output files or data set.

Most useful tasks with ASE are: structure optimization (with or without constraints),
molecular dynamics, and performing nudged elastic band calculations or its variants. For
more details see: https://wiki.fysik.dtu.dk/ase/

OpenMD: it is an MD tool based on force
performing MD simulations of open systems (such as liquids, proteins, nanoparticles,
interfaces, and other complex systems). Note that we used 2.6 version of the program. The
code is written in C++ and uses Python for its data pre/post processing. In the DJMol

10

Different modules in ASE. Interface denotes the DJMol platform.

that to use ASE, a minimum-level knowledge on Python programming
language (version 3.x) is a mandate. See Appendix-A for a basic course on Python
programming. ASE’s input should written in an object-oriented style, so that the syntax of

y flexible and it can be used to perform a series of jobs, by using, say, a
Another advantage is, it can be effectively coupled with other python base

libraries such as NumPy, Matplotlib etc. to create different types of output files or data set.

Most useful tasks with ASE are: structure optimization (with or without constraints),
molecular dynamics, and performing nudged elastic band calculations or its variants. For

https://wiki.fysik.dtu.dk/ase/.

on force-field type potential and it is widely used for
systems (such as liquids, proteins, nanoparticles,

interfaces, and other complex systems). Note that we used 2.6 version of the program. The
and uses Python for its data pre/post processing. In the DJMol

11

CygWin based C++ binaries are used and it is kept in ./OpenMD folder with other relevant
parameter-files, Python scripts etc.

The OpenMD manual is accompanied with the DJMol and it is available at:

http://openmd.org/wp-content/docs/OpenMD-2.6.pdf

OpenMD uses a range of programs and Python scripts and a user must familiarize with its
uses before the production calculation. Examples of OpenMD is illustrated in:
http://openmd.org/category/examples/

Table 5: Important binaries of OpenMD and its descriptions.

 openmd.exe The Main OpenMD Executable for MD run.

 atom2omd.exe atom2omd attempts to construct .omd files
from files containing only atomic coordinate
information

 Dump2XYZ.exe Converts an OpenMD dump file into a file
suitable for viewing in a molecular dynamics
viewer.

 DynamicProps.exe Computes time correlation functions like
the velocity autocorrelation function, or the
mean square displacement.

 elasticConstants.exe elasticConstants computes the general
elastic constants that relate stress and
strain for a given input configuration.

 Hydro.exe Hydro generates hydrodynamic resistance
tensor (.hydro) files which are required
when using the Langevin integrator using
complex rigid bodies.

 icosahedralBuilder.exe icosahedralBuilder creates single-
component geometric solids that can be
useful in simulating nanostructures.

nanoparticleBuilder.exe, programs to construct nanoparticles of

12

nanorodBuilder.exe,nanorod_ various sizes and geometries.

omd2omd.exe omd2omd is a utility script which helps in
replicating, rotating, and translating already
built OpenMD .omd, .dump, and.eor files.

 randomBuilder.exe, simpleBuilder.exe generate crystals.

 recenter.exe recenter is a utility script which moves all
integrable objects in an OpenMD file so that
the center of mass is at the origin.

SequentialProps.exe Computes a time history of static properties
from a dump file.

 StaticProps.exe Computes static properties like the pair
distribution function.

 thermalizer.exe Thermalizer gives the atoms some initial
velocities (at a given temperature) before
the equilibration.

Table 4: Short Descriptions the Python scripts.

affineScale.py OpenMD affine scaling transform

Takes an OpenMD file and scales both the
periodic box and the coordinates of all
StuntDoubles in the system by the same
amount.

You can either specify a new volume scaling
for isotropic scaling, or specify one (or
more) of the coordinates for non-isotropic
scaling.

dumpConverter.py Dump File Converter Converts old-style
OOPSE md and dump files into new
OpenMD style combined files

13

funcflExtractor.py Funcfl Extractor Opens an DYNAMO86 EAM
funcfl file, parses the data and writes out
separate files for F[rho], rho(r), and Z(r)

hbtetAnalyzer.py

It is used for doing analysis on Hydrogen
Bond Tetrahedrality matrices

hydroExplainer.py Computes predicted diffusion constants and
rotational relaxation times from a hydro
file. Explains the values in the hydro file in
terms of properties that can be calculated
from a molecular dynamics simulation.

lcorrzFit.py A utility script to analyze of Legendre
correlation functions

omdLast.py OpenMD File Extractor: Makes omd file
from the last good frame of OpenMD dump
file.

omdShrink.py OpenMD File Trimmer: Skips every n frames
of an OpenMD dump file and loads it into
new dump file

omd-solvator.py OMD Solvator: Opens two omd files, one
with a solute structure and one with a
solvent structure. Deletes any solvent
molecules that overlap with solute
molecules and produces a new combined
omd file. The output omd

file must be edited to run properly in
OpenMD. Note that the two boxes must
have identical box geometries (specified on
the Hmat line).

omdSplit.py OpenMD File Splitter: Splits OpenMD dump
file frames into separate omd files

pack2omd.py Packmol RigidBody Replacer: Finds
atomistic rigid bodies in a packmol-

14

generated xyz file and generates an
OpenMD (omd) file with center of mass and
orientational coordinates for rigid bodies.

principalAxisCalculator.py It opens an XYZ file and computes the
moments of inertia and principal axes for
the structure in the XYZ file. Optionally
rotates the structure so that the long axis
(that with the smallest eigenvalue) is
pointing along the z-axis.

protonSampler.py This python script will generate proton
disordered configurations of ice-Ih, given an
input of the (.xyz) coordinates of the oxygen
positions in the lattice.

slabBuilder.py SlabBuilder to create starting omd files for
arbitrary surface cuts specified by Miller
indices (hkl) of FCC, BCC and SC materials

slipLength.py slipLength is a built in analysis script which
can compute the slip-length of a solid-liquid
interface under shear. The script assumes
the solid is placed in the middle of the box,
with equal amounts of liquid on either side.

solLiqFricCalc.py Used for calculating solid liquid friction
coefficients

solvator.py A script that reads in a water box and solute
xyz (or pdb), merges the two systems, and

deletes overlapping molecules

stat2dielectric.py A script that computes the static dielectric
constant.

stat2dipolecorr.py A script that computes the system dipole
correlation function

stat2tension.py Used for computing surface tensions from
pressure tensors in stat files

15

stat2thcond.py Computes the correlation function of the
heat flux vector that has been stored in a
stat file. These can be used to compute the
thermal conductivity.

stat2visco.py Computes various correlation functions of
the pressure and pressure tensor that have
been stored in a stat file. These can be
used to compute shear and bulk viscosities.

vcorr2spectrum.py A script that processes a velocity
autocorrelation function into a amplitude
spectrum Post-processes a vcorr file and
creates a normalized spectrum.

waterBoxer.py builds a lattice of water molecules in a
periodic box

waterReplacer.py Finds atomistic waters in an xyz file and
generates an OpenMD (omd) file with
center of mass and orientational
coordinates for rigid body waters.

waterRotator.py Samples water orientations from a list of
known good orientations

wcorr2spectrum.py A script that processes a charge velocity
autocorrelation function into a amplitude
spectrum ;Post-processes a wcorr file and
creates a normalized spectrum.

Major Components of the Software

DJMol program is, in essence, a rich client platform (RCP) GUI application that has been
built on the top of the RCP framework of the Netbeans IDE. The underlying OOP paradigm
permits simple and straight-forward addition and extension of extra modules or plug-ins

16

into its RCP frame work. This application can also be viewed as a molecular workbench that
integrates many application programs for modeling molecular systems into a single
framework. The main components of the GUI are discussed below.

(1) Basic IDE components: As indicated earlier the IDE component, inherited from
Netbeans RCP module, is the core part the user-interface. The IDE framework offers a
standard set of tools dedicated for advanced programming or scripting tasks. IDE
significantly improve productivity of its users since it automates several text based
processes (code completion, version control, project management, restoring old
versions of the text files etc.). Several of native IDE menus are integrated; e.g. the File
menu selects a coordinate data by its file extension (eg. xyz or hsd) to visualize the
structure and open its text to the text editor of the IDE. Note that in the current
version of the program xyz or hsd files are selected as the default file extensions for
the viewer. The selected file can be manipulated at different levels by using its Edit,
View and Source menus. Other basic IDE features like refactoring of files, Git facility,
visual diff utility (to compare the contents of two text files) etc. are also supported.
Project Explorer - which is placed on the far left side - shows the packages (directories
and it files) that make up Python projects; It can also be used to systematically arrange
or manipulate other data. Files and Favorite explorer panels are two tools for
managing files (including binaries) in general. See Fig A for the IDE text editor which
displays a Python script.

Figure 1.3: A Python script is displayed in the IDE text editor with syntax highlighting
option.

(2) Top Component Window: The center panel of the software is set to display molecules
and it embeds an unabridged Jmol visualizer binary and it is used in the TopComponent
class (the basic unit of RCP display). Optionally a scripting tool (for Jmol scripting) can
be invoked from this panel to create more sophisticated and customized molecular
visualizations (See Table 5).

17

Table 5: Some selected one-liner commands of Jmol scripts and its descriptions.

load =cod/1000373 {2,2,2}

minimize

write "C:\\file.pdb"

isosurface cutoff 0.01
"C:\\cube.gz"

q=quaternion()

Loads 2x2x2 supercell of NaVO2F2 from COD
database

Molecular mechanics (UFF) steepest descent
minimization

Save the molecule into a PDB file

Visualize an isosurface from a gzipped CUBE file

Saving orientation in quaternion rather than Euler
angles

(3) 2D and 3D Data Windows: JFreeChart library (a Java library for displaying various types

of scientific data) is used to create a 2D graphs and it is usually projected onto a JPanel
(a Swing GUI widget toolkit) to display the plots. By this, one can add more control
options to the rendered graphs (See, Fig-D for a 2D plot with more control options). It
is the default 2D data plot library of the DJMol and it has several graphic styles and it
offers many configuration options to customize the rendering of graphics and it export
the graphic content in PNG format. Apart from this, Matplotlib library is also used to
display 2D graphics especially with Siesta add-on. The 3D graphics (scalar volumetric
data such as density isosurface) windows all are embedded with Jmol application with
some internal Jmol script commands. To manipulate the 3D data either Jmol scripts or
Pythons scripts are used. For example, a Python script is used to convert xsf file format
(which is frequently used in Siesta) into the cube format.

(4) Terminal Window: One can run OS commands and Python scripts with this window.
Note that in the Windows version of the program the CygWin environment is
automatically linked with this terminal. If necessary, WSL (a compatibility layer for

18

running native Linux executables under Windows 10 OS) can also be linked. See the
manual for more details. The plug-in for the Python integration into the software can
be switched to get Python 2.x as well as Python 3.x. It gives the terminal based
(interactive mode) access to the language. As an example, by using this terminal one
can install many additional packages like ASE or Matplotlib library. Using SSH
commands of CygWin or WSL this terminal can be connected with other remote
machines.

(5) Console Window: This window is usually placed immediately below the Top
Component window and it is mainly used to display console output text (eg. to show
DFTB+ output when it runs). It also contains Start and Stop buttons to execute the
DFTB+ program. The log text from this window can be saved or post processed,
optionally.

(6) Add-on Windows: Other major window components are from the add-on programs
based on Swing API. Currently there are six add-ons are constructed and all these
programs are independent of each other. And these add-ons are built from JFrame –
the base container of the application. At present it supports all the AWT (abstract
window toolkit) components. Although more recent JavaFX class to create desktop
applications exist in Java, we always used Swing based GUIs since more libraries and
tools are available for Swing API.

Schematically all these key GUI components are shown in the figure 1.4 .

Figure 1.4: A schematic classification of major window components which constitute the
entire GUI of DJMol program.

2

Here we illustrate some standard procedures
in conjunction with DJMol platform. At present there are three distinct file types can be
opened for DFTB+ calculations, viz., [1] dftb_in.hsd, <.xyz> and <.gen> files. The
the default unique file type for the program and the
converted into <dftb_in.hsd> file by using a script writer (see below section).

[1] DFTB+ SCRIPT WRITER

If one opens a <.xyz> or <.hsd> file, for visualizing the structure, subsequently one
can also try to make a corresponding
program. Using this, a user can make a basic
jobs, including, geometry optimization, calculating excited states or Hessian etc. It
can be retrieved by:

19

 DFTB+

CALCULATIONS

Here we illustrate some standard procedures that can be performed by the DFTB+ program
present there are three distinct file types can be

calculations, viz., [1] dftb_in.hsd, <.xyz> and <.gen> files. The first one is
the default unique file type for the program and the last two file extensions can be

.hsd> file by using a script writer (see below section).

If one opens a <.xyz> or <.hsd> file, for visualizing the structure, subsequently one
corresponding <dftb_in.hsd> file using a DFTB+ script writer

. Using this, a user can make a basic <dftb_in.hsd> script for a range of
jobs, including, geometry optimization, calculating excited states or Hessian etc. It

Set Up ➤ DFTB Scripting

And the generated <dftb_in.hsd> file is
atomic information including its geometry is directly taken from <gen> data of the
currently loaded file.

Note that, the Script-Writer module will write <TEMPdftb_in.hsd> into the <Input>
folder. It is strongly recommended that, a user should always try to
inspect/modify this script before its submission, if it is necessary.

Figure 2.1: A screen shot of the script writer tool for the DFTB+ program.

[2] EXECUTING DFTB+ SCRIPTS

Running DFTB+ calculator is possible
sure that the <Input> folder should have this file before the execution and this file
can be executed as:

Execute ➤ Run DFTB+

20

And the generated <dftb_in.hsd> file is kept in <Input> folder. Note that the
atomic information including its geometry is directly taken from <gen> data of the

Writer module will write <TEMPdftb_in.hsd> into the <Input>
ended that, a user should always try to

inspect/modify this script before its submission, if it is necessary.

: A screen shot of the script writer tool for the DFTB+ program.

Running DFTB+ calculator is possible when you load a <dftb_in.hsd> file. Make
sure that the <Input> folder should have this file before the execution and this file

And if necessary, this Run can be killed by

Execute ➤ Stop DFTB+

The generated/loaded files are usually placed in the` <DFTB_Scratch>filder. And
these files are also sent back as a Zip file, to the directory where your current
<hsd> file resides.

DFTB+ generated data can be analyzed or visualized by the program. Main data analyzers
are given below.

[3] FORCE COMPONENTS

DFTB+ out file contains information about Cartesian force components (in atomic
units) and this can be visualized as a line chart as shown below. The
<detailed.out> file can be opened by:

Tools ➤ ForceComponents

21

And if necessary, this Run can be killed by

files are usually placed in the` <DFTB_Scratch>filder. And
these files are also sent back as a Zip file, to the directory where your current

DFTB+ generated data can be analyzed or visualized by the program. Main data analyzers

DFTB+ out file contains information about Cartesian force components (in atomic
units) and this can be visualized as a line chart as shown below. The
<detailed.out> file can be opened by:

Figure 2.2: The x components of the Cartesian forces of the Fullerene molecule after the
geometry optimization. The shaded portion can be easily zoomed in for more details.

[4] MOLECULAR ORBITALS AND ENERGY L

MO information (including density and
.CUBE format. In order to get cube files one needs to ensure that dftb_in.hsd file
contains relevant keywords (WriteDetailedXML
example directory for a template file). After running
files (detailed.xml, charges.bin, and eigenvec.bin) and these files should be
transferred from <DFTB_Scratch> directory to <ModesBinary> folder. Then
invoke:

Execute ➤ Run Waveplot

From this window, select the proper SK f
Specify SK set and Generate HSD file
Waveplot File>. This will produce the needed HSD file for the Waveplot.exe binary
file. View this file from the second tab and edit it if neede
<Calculate> button to produce the necessary CUBE file. Note that it might take
some minutes to complete the task (depending on the size of the system).

To visualize the cubes file, first copy the Full Path of the folder, <ModesBinary>
and then go to:

Tools ➤ View Cube

Then click on the button, <Open Directory
Path into it and select a CUBE file. This will list all the CUBE files into the table, and
this can be visualized easily by selecting the need

22

components of the Cartesian forces of the Fullerene molecule after the
geometry optimization. The shaded portion can be easily zoomed in for more details.

LEVELS

MO information (including density and density difference files) are stored in the
.CUBE format. In order to get cube files one needs to ensure that dftb_in.hsd file

WriteDetailedXML and WriteEigenvectors, see
example directory for a template file). After running this file it will produce 3 out
files (detailed.xml, charges.bin, and eigenvec.bin) and these files should be
transferred from <DFTB_Scratch> directory to <ModesBinary> folder. Then

From this window, select the proper SK file set (look at the combo box entitled,
Specify SK set and Generate HSD file) and press on the button <Generate

>. This will produce the needed HSD file for the Waveplot.exe binary
file. View this file from the second tab and edit it if needed. Then invoke the

> button to produce the necessary CUBE file. Note that it might take
some minutes to complete the task (depending on the size of the system).

To visualize the cubes file, first copy the Full Path of the folder, <ModesBinary>

Open Directory> and insert the recently copied Full
Path into it and select a CUBE file. This will list all the CUBE files into the table, and
this can be visualized easily by selecting the needed file name from the table and

by clicking on the <Open> button. Optionally one can also use
facility for more advanced file visualizations or manipulations.

Figure 2.3: Visual of one of the MOs from the list of CUBE files.

To view only MO energy levels and its degeneracies, one can use the
<detailed.out> file and this can be called by:

Tools ➤ MO Levels

The green lines represent occupied and red lines represent the un occupied levels.
For accurate calculations (which use tight SCC pa
the degeneracies levels.

23

> button. Optionally one can also use JMol scripting
facility for more advanced file visualizations or manipulations.

Visual of one of the MOs from the list of CUBE files.

MO energy levels and its degeneracies, one can use the
<detailed.out> file and this can be called by:

The green lines represent occupied and red lines represent the un occupied levels.
For accurate calculations (which use tight SCC parameters) one can also look at

Figure 2.4: MO energy levels from the detailed.out file.

[5] UV-VISIBLE SPECTRUM CONVOLUTION

DFTB+ uses TD-DFTB for calculating oscillator strength of the optical excitations
and this is stored in SPX.dat file. An add
can be invoked by:

Tools ➤ UV-Vis Spectrum

24

MO energy levels from the detailed.out file.

ONVOLUTION

DFTB for calculating oscillator strength of the optical excitations
file. An add-on is used for reading this data and this

Select a SPX.dat file to proceed. This will
lines) and its fitted function (broadened through convolution with a Gaussian,
Lorentzian function or its linear combination, known as pseudo
shown by blue curves). By default it uses
equivalent spectrum using nm units (this creates a separate plot). Note that the
oscillator strength is dimensionless

By right clicking the plot, one can adjust several parameters (Auto
Grid Lines, Axes properties etc.) of the figure and can save the image into PNG
format.

Figure 2.5: UV-Visible spectrum of an organic molecule fitted with Lorentzian convolution.

[6] PARTIAL CHARGES

DFTB+ caclulates partial charges and this charges can be projected out into the
individual atoms. This Utility can be invoked by:

Tools ➤ Partial Charges

25

file to proceed. This will plot the oscillator strengths (vertical red
lines) and its fitted function (broadened through convolution with a Gaussian,
Lorentzian function or its linear combination, known as pseudo-Voigt functions -
shown by blue curves). By default it uses eV however one can also obtain an

units (this creates a separate plot). Note that the
dimensionless quantity and it is described in the y axis.

By right clicking the plot, one can adjust several parameters (Auto Range, Zoom,
Grid Lines, Axes properties etc.) of the figure and can save the image into PNG

Visible spectrum of an organic molecule fitted with Lorentzian convolution.

and this charges can be projected out into the
individual atoms. This Utility can be invoked by:

This utility read both the XYZ geometry and its corresponding
color scale will also be shown for a reference.
and this file be saved for a reference (See Appendix section for the

Figure 2.6: Numerical values of Mulliken's partial charges are represented on atoms

[7] MOLECULAR VIBRATIONS

By using Harmonic approximation DFTB+ calculates the vibrational normal modes
and frequencies. This requires Hessian Matrix (calculated by the DFTB+) and a
script file for modes.exe binary (which calculates modes and frequencies).

The first step is to optimize the geometry
ready one can do the vibrational calculation
includes Driver = SecondDerivatives{}
will generate the needed hessian.out

26

This utility read both the XYZ geometry and its corresponding detailed.out file. A
color scale will also be shown for a reference. Note that this will generate a file
and this file be saved for a reference (See Appendix section for the Saved Data).

: Numerical values of Mulliken's partial charges are represented on atoms

approximation DFTB+ calculates the vibrational normal modes
and frequencies. This requires Hessian Matrix (calculated by the DFTB+) and a
script file for modes.exe binary (which calculates modes and frequencies).

The first step is to optimize the geometry. And once the optimized geometry is
vibrational calculation with the necessary keywords (it

Driver = SecondDerivatives{} keywords; See the example directory). This
hessian.out file for the modes.exe.

27

To calculate vibrational modes vectors, to visualize/animate these modes and to
get the frequencies, invoke the tool as:

Execute ➤ Run Modes

Here in this tool one has to enter the optimized GEN styled geometry

Geometry= GenFormat {

 ...

}

and the hessian data as:

hessian = {

...

}

Note that the dots (...) represents the numerical value of the Hessian matrix ie.
ALL the numerical value of the file , hessian.out, which is 3Nx3N matrix data (force
constant matrix).

After these two data entry select the corresponding SK file set and then click on
the button: Generate Script. This will generate modes_in.hsd file in the
ModesBinary folder. This file contains all the information for the modes.exe
program which diagonalizes the hessian matrix to give modes/frequency
information. The button, Generate Modes/Frequencies initiate this operation and
produces the file, modes.xyz which contains the frequency/modes information.

To view this file another application is used this can be called by:

Tools ➤ View Modes

This will read the files modes.xyz and visualize the vectors/animations etc. Note
that the Hessian data is used by the modes.exe binary
does not projects out translational and rotational motions
be optimize the molecule well enough. If needed see
the projection technique of Hessian matrix (Sayvetz conditions).

Figure 2.7: Vibrational modes of water molecules read from the file modes.xyz in t
ModesBinary directory.

28

This will read the files modes.xyz and visualize the vectors/animations etc. Note
that the Hessian data is used by the modes.exe binary as such. In other words it
does not projects out translational and rotational motions. So that the user should
be optimize the molecule well enough. If needed see http://gaussian.com/vib/ on
the projection technique of Hessian matrix (Sayvetz conditions).

: Vibrational modes of water molecules read from the file modes.xyz in the

[8] REAL TIME MOLECULAR DYNAMICS

MD simulations can be done with or without using this tool. Normally one can
submit MD job as usual (like a static calculation job). However, this MD tool is
mainly used in real time so that a user can analyze Trajectory properties (Total
Energy, Kinetic/Potential Energies, structure of each step) at Run Time. Moreover
FFT based autocorrelation functions can be used to calculate IR spectra (from the
dipole moments or from the velocity au
MD run. Note that, the MD analyzer tool should be invoked
calculation. While running the MD calculation it will show

the progress of the data along with the current structure.

[1] Remove all the files from ./DFTB_Scratch directory

[2] Open MD file as,

[3] Invoke the MD tool as,

[4] Execute MD run as,

[5] Wait for the MD calculation
<Velocity Autocorrelation Spectra>.

Figure 2.8: Variations of energies during the MD, in real time.

29

MD simulations can be done with or without using this tool. Normally one can
submit MD job as usual (like a static calculation job). However, this MD tool is

that a user can analyze Trajectory properties (Total
Energy, Kinetic/Potential Energies, structure of each step) at Run Time. Moreover
FFT based autocorrelation functions can be used to calculate IR spectra (from the
dipole moments or from the velocity autocorrelation functions) after finishing the

Note that, the MD analyzer tool should be invoked before the DFTB+
calculation. While running the MD calculation it will show

the progress of the data along with the current structure. Its step are:

the files from ./DFTB_Scratch directory. It is Mandate.

 File ➤ Open (hsd)

[3] Invoke the MD tool as, Tools ➤ MD Analyzer

 Execute ➤ Run DFTB+

[5] Wait for the MD calculation to finish; and after that use tools like,
<Velocity Autocorrelation Spectra>.

: Variations of energies during the MD, in real time.

[9] POTENTIAL ENERGY SURFACES (2D/1D)

The DJMol creates 2D PES (potential energy surface) by performing a series of
DFTB+ calculations. For example, PES of H
created by doing a batch process. To create 2D PES we need two independent
internal coordinate variables and, arbitrarily, we have chosen the O
and the H-H dihedral angle (in degrees) as shown in Fig. X.

Figure 2.9: The two independent variables of H
Angstrom and that of the dihedral angle is in degrees.

In first, make the structure of the molecule (or see Example folder for its
coordinates); then using the <Convert Structure> tool (See Fig.2), convert this XYZ
formatted file into the MOPIN format (which contains an equivalent z
data). And copy the content of this file into <Build PES HSD> tool as shown in the
Fig. 3.

By clicking the button, <Generate PES HSD Files>, this will generate 441 HSD input
files for the DFTB+ program (it will take around ten minutes); copy all of these HSD
files into the <SCRATCH> folder (a user can also select any other directory instead
of this one) and then invoke the <Batch Processing Tool>. This will start DFTB+
program to execute all these files and create the PES in the <PESScan> folder.

30

(2D/1D)

The DJMol creates 2D PES (potential energy surface) by performing a series of
calculations. For example, PES of H2O2 (hydrogen peroxide) molecule is

created by doing a batch process. To create 2D PES we need two independent
internal coordinate variables and, arbitrarily, we have chosen the O-O bond length

(in degrees) as shown in Fig. X.

: The two independent variables of H2O2 PES. The unit of bond length is in
Angstrom and that of the dihedral angle is in degrees.

In first, make the structure of the molecule (or see Example folder for its
coordinates); then using the <Convert Structure> tool (See Fig.2), convert this XYZ
formatted file into the MOPIN format (which contains an equivalent z-matrix
data). And copy the content of this file into <Build PES HSD> tool as shown in the

By clicking the button, <Generate PES HSD Files>, this will generate 441 HSD input
files for the DFTB+ program (it will take around ten minutes); copy all of these HSD
files into the <SCRATCH> folder (a user can also select any other directory instead

his one) and then invoke the <Batch Processing Tool>. This will start DFTB+
program to execute all these files and create the PES in the <PESScan> folder.

31

 Figure 2.10: The Convert tool is used to transform Cartesian file into a Mopin file (which
essentially contain the z-matrix in Mopac’s format).

Figure 2.11: The converted MOPIN files content is inserted in the below text area and insert
the variable name in the appropriate position. VariableI represents the O-O bond length
(starts from 1.2Å) and VariableII, it H-H dihedral angle (starts with 0.0o).

After finishing the batch process, <PESViewer> can be invoked to get the plot of 2D PES or
its contour diagram as shown in the Fig. 4. This utility will also indicates the minimum
energy data point on the PES (in other words from this point one can start geometry
optimization to locate local minimum) and its corresponding geometry file.

In <PESScan> folder one will see the following data files (See Table 6).

Table 6: Datafiles of PES calculations.

View2DPES.dat

2DPESscan.dat

2DPESscanmovie.xyz

 Figure 2.12: The PES of the cis-trans conversion of H
length is around 1.48 Å and for shorter bond lengths the energy minimum is located near to
90.0o or 270.0o.

32

After finishing the batch process, <PESViewer> can be invoked to get the plot of 2D PES or
its contour diagram as shown in the Fig. 4. This utility will also indicates the minimum

the PES (in other words from this point one can start geometry
optimization to locate local minimum) and its corresponding geometry file.

ll see the following data files (See Table 6).

Gives the data intervals in x and y directions
and energy as E(x,y) in eV

It contains the sorted file names used in the
PES creation with energy (in eV and in
Hartree).

Contains the geometry of the individual
molecules in xyz format. It can be
visualized/animated with DJMol. This can be
userd to construct PES with other ab initio
programs.

trans conversion of H2O2 . Note that the optimum bond
length is around 1.48 Å and for shorter bond lengths the energy minimum is located near to

3

This add-on is mainly used for performing
(with hundred of atoms). For larger calculations users are advised to use cluster/GCP
machines with MPI parallel binaries. This add
core machines can be used for its calculations, if it is found necessary. Note that Siesta 4.1
version is used in this add-on.

At the present version all molecular structural data and non Z
data is supported by this add-on.

[1] SIESTA SCRIPT WRITER

A basic Siesta script (.fdf file) write is written; it can be used to make a template
FDF file for molecular as well as crystalline systems. Most commonly used key
words are added and this can be selected optionally. However user is advised to
refer Siesta 4.1 manual for finalizing the script. This tool can be invoked as:

33

 MODELING WITH

SIESTA

on is mainly used for performing small to moderate level Siesta DFT calculations
(with hundred of atoms). For larger calculations users are advised to use cluster/GCP
machines with MPI parallel binaries. This add-on is equipped with OpenMP so that multi

alculations, if it is found necessary. Note that Siesta 4.1

At the present version all molecular structural data and non Z-matrix styled crystalline FDF

basic Siesta script (.fdf file) write is written; it can be used to make a template
FDF file for molecular as well as crystalline systems. Most commonly used key
words are added and this can be selected optionally. However user is advised to

.1 manual for finalizing the script. This tool can be invoked as:

Set Up

Figure 3.1: A script writer tool (FDF writer) in the Siesta add

The newly generated file is kept in: .\Input directory.

If an XYZ file is loaded into the Main Viewer, FDF file will generated with that geometry.

[2] SIESTA ADD-ON AND EXECUTING THE

All the basic tasks for Siesta (except its script writing) is carried out in Siesta add
on and it can be called by:

Execute

34

Set Up ➤ Siesta Scripting

A script writer tool (FDF writer) in the Siesta add-on.

directory.

If an XYZ file is loaded into the Main Viewer, FDF file will generated with that geometry.

XECUTING THE PROGRAM

All the basic tasks for Siesta (except its script writing) is carried out in Siesta add-

Execute ➤ Siesta Calculator

It will launch the add-on as a separate program. A variety of FDF file is supported
by the Jmol and hence this add-on. Use <Open> for calling these FDF files.

For example, h2o2.fdf can be opened and it can be submitted in this
by simply going to the tab <Run> and clicking the Run button. The below figure
shows a console output of a Siesta run. Note that the output file is stored in,

.\SiestaApp\SiestaBinary.4.0.CygWin64
in .\SiestaApp\siestaMAIN.log.

Figure 3.2: Siesta log is shown in the console window of the add

In <Analysis> some standard or routine calculations or analysis can be
as checking SCF convergence, Cartesian Force components and vectors (of
optimized structure), Eigenvalues etc. from the relevant files in
.\SiestaApp\SiestaBinary.4.0.CygWin64
examples.

[3] BASIC ANALAYZERS

After running the calculations, one can use many basic analyzers, for example to
check SCF convergence for single point as well as geometry optimization etc.

35

on as a separate program. A variety of FDF file is supported
on. Use <Open> for calling these FDF files.

.fdf can be opened and it can be submitted in this application,
by simply going to the tab <Run> and clicking the Run button. The below figure
shows a console output of a Siesta run. Note that the output file is stored in,

SiestaBinary.4.0.CygWin64 directory. And its console log file is saved

Siesta log is shown in the console window of the add-on.

In <Analysis> some standard or routine calculations or analysis can be done, such
as checking SCF convergence, Cartesian Force components and vectors (of
optimized structure), Eigenvalues etc. from the relevant files in

SiestaBinary.4.0.CygWin64. See the below figure of h2o2.fdf out file

After running the calculations, one can use many basic analyzers, for example to
check SCF convergence for single point as well as geometry optimization etc.

36

Figure 3.3: The window shows basic commands for the Siesta post processing.

Some of the analyzers results are shown below.

 Basic Analyzers Results:

Figure 3.4: Results from the Siesta post processing is shown.

37

Figure 3.5: Force component vectors of each atom in H2O2 (non equilibrium geometry).

 Denchar Results

Denchar is a Siesta utility-program to plot charge densities and wave functions in real
space. It can be used in 2D or in 3D. A template script for water molecule is given (but this
can be modified very easily for other molecules), and its 2D/3D data can be obtained by
following Steps I-IV, systematically. Note that  point used in this calculations.

(a)

(b)

Figure 3.6: (a)Shows list of 2D data files of water molecule from the Denchar utility, with
two different real wavefunctions (the first two low lying orbitals in a contour diagram);(b)
shows equivalent 3D data.

Similary, band diagram can also be generates with template scripts.

Figure 3.7: Band and DOS diagram of Aluminium (FCC). Note that in DOS plot, there are
actually three lines (lower orange line is composed of two lines which corresponds to spin
up and down contributions, whereas green line corresponds to the total DOS).

[4] WANNIER ORBITALS AND BAND DIAGRAMS

To Wannier get localized molecular orbitals of crystalline or extended systems
from the Bloch wavefunction, Wannier90.exe program is used in conjunction with
the Siesta binaries. See www.wannier.org

In the tab <Wannier DOS/Orbitals> thi
steps I to VII (as an example template, FCC bulk Si is used). Results can be viewed
by using <Plot Bands> or by <View Wannier Orbitals>. This template files can be
easily modified for other systems.

38

also be generates with template scripts.

: Band and DOS diagram of Aluminium (FCC). Note that in DOS plot, there are
actually three lines (lower orange line is composed of two lines which corresponds to spin

contributions, whereas green line corresponds to the total DOS).

IAGRAMS

To Wannier get localized molecular orbitals of crystalline or extended systems
from the Bloch wavefunction, Wannier90.exe program is used in conjunction with

www.wannier.org for more details.

In the tab <Wannier DOS/Orbitals> this information can be obtained by following
steps I to VII (as an example template, FCC bulk Si is used). Results can be viewed
by using <Plot Bands> or by <View Wannier Orbitals>. This template files can be

39

Figure 3.8: Steps of Wannier data calculations.

<Plot Bands> give Wannier band diagram and <View Wannier Orbitals> list XSF
files and that can be converted into the CUBE file format to display Wannier
functions.

Figure 3.9: A Wannier orbital of bulk Si generated from a XSF file.

[5] MOLECULAR VIBRATIONS

Molecular vibrations (using  point) can be easily calculated with the application.
In the tab, <Vibrations>, execute the steps I
example script is made for water molecule, but
molecules.). The last command, <Run Vibra> calculates eigenvalues/vectors and it
gives an another window in which different modes can be animated. The essential
molecules vibrational data is saved in
.\SiestaApp\SiestaBinary.4.0.CygWin64

Figure 3.10: A vibrational frequency calculator module and its mode

40

 point) can be easily calculated with the application.
In the tab, <Vibrations>, execute the steps I-V, one after another (note that
example script is made for water molecule, but it can be readily modified for other
molecules.). The last command, <Run Vibra> calculates eigenvalues/vectors and it
gives an another window in which different modes can be animated. The essential
molecules vibrational data is saved in

inary.4.0.CygWin64\SiestaVibModes.xyz.

A vibrational frequency calculator module and its mode-displayer.

4

OpenMD add-on is aimed to perform MD calculations with OpenMD
tool has four parts, (1), Viewer (2), Editor (3), Terminal and, (4), Utilities.

Figure 4.1: Front end of the OpenMD add-
OpenMD.

In viewer a normal XYZ file can be viewed (usually it is
using a converter, Dump2XYZ). All other standard Jmol view facilities are available here.

41

 OPENMD

SIMULATIONS

on is aimed to perform MD calculations with OpenMD binary/scripts. This

tool has four parts, (1), Viewer (2), Editor (3), Terminal and, (4), Utilities.

-on tool displays Ag nanoparticle obtained using

In viewer a normal XYZ file can be viewed (usually it is obtained from OMD dump file by
). All other standard Jmol view facilities are available here.

Note that XYZ file will keep in the <OpenMD/Tempview> directory whereas the OMD file
will be kept in the <./OpenMD> folder.

The Editor tool will open an OMD file. Since OMD file is a kind of XML file, a special editor is
used to fold and un-fold many sections of this file as shown in the following file.

 In Terminal-Tab, simple DOS commands can be executed. Note that one should add:

cmd.exe /c

before the Python scripts (eg. cmd.exe /c python.exe slabBuilder.py). The commands are
stored in a stack-array and it can be easily called back (See Stored Commands).

In the Utility-Tab several tools are added (eg. <Clean OpenMD> will delete the MD
and <Open Trajectory> will open a separate viewer window to animate trajectories etc.).
The <Plot Energies> will open <Stat> file and plot total, kinetic and potential energies.
Similarly, <T P V> plot variation of temperature, pressure and volu
it is stored in the <Stat> file.

Figure 4.2: OpenMD Tool’s XML styled editor for the OMD scripts.

42

Note that XYZ file will keep in the <OpenMD/Tempview> directory whereas the OMD file

tool will open an OMD file. Since OMD file is a kind of XML file, a special editor is
many sections of this file as shown in the following file.

Tab, simple DOS commands can be executed. Note that one should add:

before the Python scripts (eg. cmd.exe /c python.exe slabBuilder.py). The commands are
array and it can be easily called back (See Stored Commands).

Tab several tools are added (eg. <Clean OpenMD> will delete the MD out files
and <Open Trajectory> will open a separate viewer window to animate trajectories etc.).
The <Plot Energies> will open <Stat> file and plot total, kinetic and potential energies.
Similarly, <T P V> plot variation of temperature, pressure and volume during the MD run as

: OpenMD Tool’s XML styled editor for the OMD scripts.

Figure 4.3: OpenMD Analyze variation of different energies during an MD simulation.

Since analyzing bond length gives an indic
Length> tool can be used to extract Bond length between two selected atoms (“Atom
Number 1” and “Atom Number 2”). This will read XYZ file which
Boundary Conditions or PBC (as an example see,

43

: OpenMD Analyze variation of different energies during an MD simulation.

Since analyzing bond length gives an indication of reaction progress, <Calculate Bond
Length> tool can be used to extract Bond length between two selected atoms (“Atom
Number 1” and “Atom Number 2”). This will read XYZ file which doesn’t use Periodic
Boundary Conditions or PBC (as an example see, SampleAnimationTest.xyz file).

Figure 4.4: An out file from the MDAnalysis script. It describes that the bond is break near
400’th frame (in a periodic cubic box cell).

However, if PBC is applied more advanced script is needed to extract this bond length
information. For example, if the system is equipped with Python and
a user can:

1. Edit <MDAnalysis> script (MDanalysisv1.py
numbers

2. Use <Add MDAnalysis in Terminal>, which will add cmd
MDanalysisv1.py in the Terminal window

3. Go to Terminal and execute the above command.

The sample MDAnalysis script is:

44

: An out file from the MDAnalysis script. It describes that the bond is break near
400’th frame (in a periodic cubic box cell).

However, if PBC is applied more advanced script is needed to extract this bond length
information. For example, if the system is equipped with Python and MDAnalysis package,

MDanalysisv1.py) if needed, eg. to change atom

Use <Add MDAnalysis in Terminal>, which will add cmd.exe /c python.exe
in the Terminal window

and execute the above command.

45

import MDAnalysis as mda
from MDAnalysis.analysis.distances import dist
import matplotlib.pyplot as plt
import numpy as np

u = mda.Universe('mdPBCTrajectoryTest.xyz')

mybox=np.array([16., 16., 16., 90., 90., 90.], dtype='f')

1-2'th BL atoms in XYZ

distances = []

for ts in u.trajectory:
 distances.append(dist(mda.AtomGroup([u.atoms[0]]),mda.AtomGroup([u.atom
s[1]]),box=[16., 16., 16., 90, 90, 90])[2][0])

plt.switch_backend('agg')
plt.plot(distances)
plt.xlabel('Frames')
plt.ylabel('Bond Length (Å)')
plt.show()
plt.savefig('1-2.png')

We strongly recommend to use MDAnalysis tools to post process the OpenMD data.

The details of MDAnalysis package is available at: https://www.mdanalysis.org/

46

5

 PYTHON

SCRIPTING WITH ASE

To demonstrate ASE scripting within the platform, we must create a Python project:

File ➤ New Project ➤ Python ➤ Python Project – Ant

and save this in a suitable directory. We name the main class as <ASEdemo>.

Figure 5.1: Setting up a Python ASE project in the DJMol application.

47

Figure 5.2: A script window displays an ASE script.

The purpose of this ASE calculation is to obtain the phonon dispersion for bulk
aluminum using a 7×7×7 supercell within effective medium theory (EMT as it is
implemented in ASE). For the source, see, Ex2_phononbulkAl_DOS.py file from the
example directory. After running it, this script will create the band and the DOS
diagram of the system.

The script is provided in the Example directory. Once the script is ready, use <Run
Project> command from the <Run> menu to execute the script. It will initiate ASE
engine and produce the band and DOS diagrams. Optionally, users can develop their
own python scripts in this project directory for other tasks (eg. to save the animation
of a particular mode).

Run ➤ Run Project

48

Figure 5.3: (1) is the Workplace and (2) is the console output from the Python run and (3) is
the resultant Band and DOS figures that is created in the Workplace.

In the next advanced example (see example directory of Python) we will show that
RDF (radial distribution function) of melting copper in a cubic box. Here, EMT is also
used but RDF function is taking from ASAP calculator. ASAP is a calculator for doing
large-scale classical molecular dynamics within the ASE package (its libraries can be
compiled in CygWin or WSL). Below figure shows the RDF from ASAP calculator and
uses systems terminal.

Figure 5.4: Radial distribution function of melting copper (FCC) at 2500K from an ASAP
calculator.

49

In first add Terminal into the system by:

 Window ➤ IDE Tools ➤ Terminal

This will get CygWin ot WSL, depends upon the settings. After this, type the code in the
terminal:

python3.6m asedemo.py

It will launch an ASAP calculation, and calculates RDF of the melting copper atoms.
Note that its RDF is very similar to that of water and it confirms that liquid state of Cu
atoms at high temperature is well represented by the ASAP model.

6

Tools are generally calculator independent (add
steps in the modeling.

Some of the important Tools are described below.

[1] Analysing Point Group

DJMol use a point group analyzer and from this one can easily find the point group
of a molecule and its subgroups. It can also tell the next possible point group
within a specified error-bar. This module can be invoked by:

Tools ➤ PointGroup Analyzer

50

 TOOLS OF DJMOL

Tools are generally calculator independent (add-on) modules which can assist some

Some of the important Tools are described below.

and from this one can easily find the point group
of a molecule and its subgroups. It can also tell the next possible point group

bar. This module can be invoked by:

This tool can also be used to deform the geometry of molecules so that one can
modify a molecule’s PG into another one (in other words, we can constrain a PG
into its sub group).

[2] Z-Matrix Editor

 Z-Matrix or Z-mat tool can be called by:

51

deform the geometry of molecules so that one can
modify a molecule’s PG into another one (in other words, we can constrain a PG

mat tool can be called by:

Extra ➤ Z-Matrix Tool

This Z-Mat editor is made for the XYZ files; It can be either used as an independent
program (use File button to load a required XYZ file) or as an auxiliary program to
manipulate the loaded XYZ file. Use either <New File> button to vary Z
a new Cartesian file or <Current File> button to fetch the currently loaded
geometry from the main panel of DJmol.

Figure 6.1: A butane molecule (exaggerated) and its Z

To change Z-Mat Data:

After displaying the geometry, select <Select a Z
show the corresponding Z-matrix data (MOPAC style, generated from the
OpenBabel application) of the displayed molecule in this application.

Also select any single cell from either <X>, or <Y> or <Z>
bond-length, bond angles, or dihedral angles, respectively. After that select
<Insert Variable> button to make the cell element as a Z

52

ditor is made for the XYZ files; It can be either used as an independent
program (use File button to load a required XYZ file) or as an auxiliary program to
manipulate the loaded XYZ file. Use either <New File> button to vary Z-matrix a of

file or <Current File> button to fetch the currently loaded
geometry from the main panel of DJmol.

: A butane molecule (exaggerated) and its Z-matrix data.

After displaying the geometry, select <Select a Z-mat variable> radio button to
matrix data (MOPAC style, generated from the

OpenBabel application) of the displayed molecule in this application.

Also select any single cell from either <X>, or <Y> or <Z> column, which represents
length, bond angles, or dihedral angles, respectively. After that select

<Insert Variable> button to make the cell element as a Z-mat variable.

53

And then use the <Save> button and close the window. After that, immediately
select the <Start Zmatrix Variation> menu from the top of the window, and by
using [+] and [-] buttons, start the variation.

One can either save the data (<Update Zmat> button) or discard the variation and
to move the molecule into its original state by using <Undo Update> button.

It is also important to note that to stop and undo the current variation,first to
select <Stop Variations> and press <Undo Update> button>.

If you want to move only X or Y or Z positions of a single atom use the menu (
<Move selected Atom>), and select an atom (use a click on the desired atom) ,
and press any[x+][x-]...buttons near the bottom left corner.

Important: To save the updated Geometry press <Update Zmat> AND then <Save
Structure> button.

Or to discard the variation and to move the molecule into its original state by
using <Undo Update> button.

Also don't forget to use <Save Structure> button to save the modified Cartesian
file. It will be saved as CurrentFinalXYZ.xyz file in the folder <ZMATfolder> in the
program directory.

If necessary use:

[1] <Select Atoms Labels> to see individual atom labels, which may be useful
when one manipulates Z-Mat.

[2] <Show initial bonds> for keeping the original bonding pattern, irrespective of
the current geometric state. This can be useful when some bonds are too far away
from the initial bonded state.

[3] <Show axis> to show cartesian axis

[4] <Add New Bond>[n1] [n2] - to show a new bond between the atomlabel, n1
to atomlabel2, n2 atoms.

[5] <Builder> option can be used if

Note that a user can also enter numerical values (in float) to the Text Fields. Also
Move the slide bar to maximum when you vary the Angles/Dihedral angles and to
a minimum if you want to manipulate the distance.

[3] Remote Submission of Scripts

For time consuming job, such as MD calculations, it is a better idea to use a
dedicated machine like Linux cluster/Google Cloud etc. instead of a PC. In this
case, one need to generate SSH keys (ie. one private and one public key),
preferably, by using PUTTYGEN application; see
download this mandate application.

Note that we need <RSA> based private key (which is stored in your PC) and a
public key (stored in the Remote machine
<Passphrase> for the <Private key> and its format should be in the
not in the PPK format, which is the PuttyGens' default). PuttyGEN can convert this
private key in PPK format to OpenSSH format. Finally the Privat
kept in the <ssh> folder with a file name, <id_rsa>. Make sure that the file
<known_hosts> is existed in <ssh> format. After this one can invoke the <Remote
Submission Tool> as:

RunProject ➤ Remote Submission

54

[3] <Show axis> to show cartesian axis

to show a new bond between the atomlabel, n1

[5] <Builder> option can be used if necessary.

Note that a user can also enter numerical values (in float) to the Text Fields. Also
Move the slide bar to maximum when you vary the Angles/Dihedral angles and to
a minimum if you want to manipulate the distance.

For time consuming job, such as MD calculations, it is a better idea to use a
dedicated machine like Linux cluster/Google Cloud etc. instead of a PC. In this
case, one need to generate SSH keys (ie. one private and one public key),

sing PUTTYGEN application; see https://www.puttygen.com/ to
download this mandate application.

Note that we need <RSA> based private key (which is stored in your PC) and a
public key (stored in the Remote machine). Note that you must enter a
<Passphrase> for the <Private key> and its format should be in the OpenSSH (ie.
not in the PPK format, which is the PuttyGens' default). PuttyGEN can convert this
private key in PPK format to OpenSSH format. Finally the Private Key should be
kept in the <ssh> folder with a file name, <id_rsa>. Make sure that the file
<known_hosts> is existed in <ssh> format. After this one can invoke the <Remote

Remote Submission

This tool can be used instead of PUTTY, and it is equipped with tools for file
upload/download purposes. The downloaded files are kept in <SCP> folder, by
default.

Figure 6.2: A sample SSH session (for Google Cloud Platform remote connection and file
transactions).

[4] VERSION CONTROL USING GIT

Version control (VC) systems are a category of software tools that help a software team
manage changes to source code over time. Version control software keeps track of every
modification to the code in a special kind of database. If a mi
turn back the clock and compare earlier versions of the code to help fix the mistake while
minimizing disruption to all team members.

55

of PUTTY, and it is equipped with tools for file
upload/download purposes. The downloaded files are kept in <SCP> folder, by

(for Google Cloud Platform remote connection and file

Version control (VC) systems are a category of software tools that help a software team
manage changes to source code over time. Version control software keeps track of every
modification to the code in a special kind of database. If a mistake is made, developers can
turn back the clock and compare earlier versions of the code to help fix the mistake while
minimizing disruption to all team members. Git is an example of VCS.

56

Why the VC is used in the DJMol? Since the text based input scripts are playing an
important role in the modeling (inputs of Siesta/DFTB/ASE, all are text files). Using
VC, these data can be re-edited remotely and at the same time it keeps different
version of these files in a systematic way (for example, later, it can be used by
collaborators/public).

Some Basic Definitions to be familiarized are:

1. FETCH: The git fetch command downloads commits, files, and refs from a
remote repository into your local repo. Fetching is what you do when you want to
see what everybody else has been working on.

2. PULL: The git pull command is used to fetch and download content from a
remote repository and immediately update the local repository to match that
content.

3. PUSH: The git push command is used to upload local repository content to a
 remote repository. Pushing is how you transfer commits from your local
repository to a remote repo. It is the counterparts to git fetch.

How to use Git to push and pull in DJMol?

1. Initializing Version Control.

a. Set up a Git Remote Repository in GitHub and copy the Repository
URL.

b. Open the project in which you need to use version Control.

c. Initializing the Local Repository.

Team ➤ Git ➤ Initialize ➤ (OK)

d. Linking the Local Repository and the online Repository

Team ➤ Remote ➤ Pull ➤ Fill ➤ Check Master ➤ Finish

Specify ➤ PateTheRepository ➤ UserName/PassWord (if

needed) ➤ Next

 2. Push

57

a. After making necessary changes in the Project.

b. From the Project sidebar, add the needed files to the repository
by right-clicking on the file and Clicking on Add.

c. Commit the files to the Repository

Team ➤ Commit ➤ AddACommitMessage ➤ Commit

d. Push to remote repository.

Team ➤ Remote ➤ PushToUpstream ➤ Yes

3. Pull

a. Fetch

Team ➤ Remote ➤ Fetch ➤ Next ➤ Finish

b. Pull

Team ➤ Remote ➤ Pull ➤ Next ➤ CheckMaster ➤ Finish

Installation of Git

Adding Github Plugins

After installing the application, search <Git> in the plug-ins search field. Select the <Git>
from the <Installed Packages> and click on <Activate> as shown below figure.

Figure 6.3: Installation of Github plugin in DJMol.

[5] DATABASE FILE RETRIEVING

To fetch different structural file form various open file repositories, a Database tool is
implemented. It is essentially uses Jmol’s DB module.

It can be launched by:

Extra ➤ Database Tool

Open URL: It can be used to open XYZ or PDB file or any other Jmol recognizable file from
the web server, say from Github.

58

: Installation of Github plugin in DJMol.

To fetch different structural file form various open file repositories, a Database tool is
implemented. It is essentially uses Jmol’s DB module.

Database Tool

: It can be used to open XYZ or PDB file or any other Jmol recognizable file from

59

Open MOL: It is mainly for, SMILES, InChI, or CAS from either a PubChem database or from
NCI/NIH database.

Open PDB: It use RCSB web (please prefer RCSB) to load 4-character PDB ID (eg. 1crn) or 3 -
character ligand (eg. 60C).

Open COD: It opens a specific COD ID from http://www.crystallography.net/cod/

Open Materials Project: It opens a specific Materials Project ID number:

All opened file is saved in ./Database folder from

Export To: Only MOL, XYZ and PDB formats are supported for export its images.

Figure 6.4: Showing a Database window with a retrieved COD file from COD databse.

[6] MISCELLANEOUS TOOLS

60

Some of the miscellaneous tools are shown below:

Start Batch Process: For DFTB+ calculation, a number of HSD files in a particular
folder can be called one after another (known as batch processing). This will be
useful for building 1D PES or to analyze energies of particular set of molecules.
The resultant TGZ files contain all the out files including the submitted HSD file,
and it will be transformed to the folder at the end of the each calculation.

Calculator: System’s default calculator can be invoked.

GIF Utility: GIF animation files can be viewed or generated using this utility (eg.
phonon modes). Time between two frames can be adjusted and the resultant file
is stored in ./Scratch_images.

Process Status: It is used to monitor current resources of the computer system
(used/availble RAM, HDD space etc.). This can be used before starting a
calculation. For example, if the PC memory is low, allocate more RAM by stopping
other less important process by using Window’s Task Manager utility.

Unit Conversion: A basic unit converter for length, time, energy etc. it also
includes atomic unit.

61

Matrix Viewer: 2D matrix data viewer of the program. It is useful to analyze the
overall shape and symmetry of the matrix data, such as Hessian or Hamiltonian.
See example directory for its sample file.

Convert Structure: Open Babel is used to convert from one structure data into
another data. See Figure 2.10.

Standard Orientation: Using symmetry a disoriented molecule can be oriented
with respect to a symmetry axis. This tool is useful for making a more systematic
Z-matrix or Cartesian file. It is strongly recommended that the standard oriented
geometry data should be used in the Z-matrix tool to re-adjust its coordinates.

Open DJMol Directory: It will open the parent directory.

Send Message: User can mail the forum using this utility. Please academic E-mail
ID (avoid .com E-mail IDs – it won’t support). If needed images should be linked as
an URL link (say, by drive.google.com/… link).

62

7

 ARCHITECTURE OF

THE PROGRAM

Software Architecture

In practice, computational materials science research encompasses three distinctive steps,
viz. (1), constructing the geometrical data or structure of the system (2), performing
computations and, (3), obtaining results by the post processing of calculated data. All these
steps can be effectively coupled by means of modeling platform such that a user can
create, visualize, and share various input data files and run it with appropriate programs to
obtain output data to analyze the results.

By integrating molecular (or crystal) visualizer, scripting tools (in this case, Python and Jmol
scripting) and other standard features of an IDE (integrated development environment), a
user can interactively build or manipulate structures of materials or molecules, and its
atomistic properties can be calculated with appropriate ab initio programs from either a
local or a remote machine. A number of built-in tools, scripts are provided for the analysis
purpose. To demonstrate the platform we have used DFTB+ as well as Siesta electronic

63

structure code along with ASE (atomic simulation environment) and OpenMD molecular
dynamics package.

 The programming language, Java (version 8) was chosen for this project since it is free,
strongly object-oriented and shows its neutrality to the various operating systems. The
object oriented programming is arguably the most popular software development
technique which effectively manages the complexity in code development [9]. We
preferred Java, since (1) it does not use pointers, and (2), it supports threads implicitly.
Although pointers provide direct access to the computer memory, careless use of the
pointers will easily leads to segmentation fault and other vulnerables. It is our personal
opinion that the bugs emerged from the improper application of pointers are difficult to
trace or debug, in addition to this, code with pointers is difficult to translate into other
computer languages without the pointer features. Concerning threads, in this application,
we used a number of threads (i.e. user threads), apart from the JVM generated daemon
threads. Since the threads are inherently supported by the language one can readily create
a thread by extending a Thread class. Exception handling of Java is equipped with two
types, namely, unchecked and checked exception handling. And in most of the cases we
used checked exceptions, as it is less tedious to implement.

 The core of the DJMol application consists of (Apache-) Netbeans Platform and it can be
regarded as the engine behind the Netbeans IDE. In other words, many of the technical
features of DJMol program is inherited from Netbeans IDE which is initially designed for
developing Java/Javascript and C/C++ applications and consists a number of utilities to
increase the productivity of a user (for example, it has an advanced sourcecode editor with
code completion utilities, tools for refactoring, version control systems, Git based
collaboration tools etc.) and these utilities can also be used efficiently for various modeling
or scripting tasks. Moreover, this platform consists of a set of independent modular
software components called modules (e.g., an SSH module to communicate with an
external cloud platform). Apart from this, the program supports plug-ins so that one can
selectively add or remove new features into it (e.g. Python interpreter) without being re-
compiled the code. Optionally, users of the code can make their own plug-ins, for example,
to incorporate another ab initio package. See the below for the schematic structure of the
program. To the best of our knowledge, DJMol is the first opensource modeling platform
which is built from a programming IDE.

To display the molecular, crystal, nanostructures a Java library, Jmol, has been embedded
into the program. The Jmol program is an open source, cross-platform and a highly
independent (i.e. it does not depend on any third party libraries like Java3D or OpenGL) 3D
visualization application. Apart from this, there are two distinct features associated with
Jmol: (1) Jmol can be programmatically embedded into any Java code which uses Swing
application programming interface (2), It supports an internal command scripting, so that a
user can control or manipulate the display or send and retrieve parameters, data,

64

commands etc. For example, to manipulate Gaussian cube files a user can effectively apply
this internal scripting ability of Jmol. Unlike most of the visualizers, Jmol is capable of
perceiving the molecular structure in three dimensions by applying stereographic
projections. A viewer, with appropriate anaglyph spectacles, 3D perspective images of the
molecules can be interactively visualized. Apart from this, Jmol consists of an UFF (uniform
force field) method and it can be used to pre-optimize a variety of organic as well as
inorganic molecules. To create 2D data plots we have used either Matplotlib based scripts
or Jfreechart libraries. In the case of 3D data plots, (for example, the potential energy
surfaces or orbital contour diagrams), a Java based opensource library jzy3d has been used.

Figure 7.1: A schematic diagram of DJMol software architecture. The core of the

program is an IDE which is connected to other modules or programs.

Figure 7.2: A standard workflow for a modeling task under the DJMol program

(mandate workflows are indicated by black arrows).

65

Java’s native thread is used to initiate add-ons so that its console can be controlled

independently, if needed. Below figure shows Windos’ Task managers snapshot

of OpenMD add-on, while it is under running (and it indicate two independent

processes).

66

8

 SOFTWARE

APPLICATIONS

Demonstration of DJMol - 1

UV-Visible Spectrum of Silver Nanocluster using DFTB+

To demonstrate the basic functionality of the software, here we describe how an UV-
Visible spectrum of a silver nanocluster can be calculated using DFTB+ code in conjunction
with the DJMol software. There are three steps to calculate the spectrum, viz. (1) Obtain
the structure of Ag nanocluster, (2) Optimize the structure and create the corresponding
HSD file for the TD-DFTB calculation and, (3) Plot the convoluted Spectrum data. Note that
we arbitrarily choose Ag177 nanocluster (its diameter is around 1.5 nm) for the TD-DFTB
calculation. And the geometry of this cluster is generated by OpenMD package (in CygWin
environment) by using experimental lattice constant of silver (4.08 A) and FCC lattice
structure. The following commands are used in the DJMol terminal to obtain the Cartesian
coordinate data of the system:

cmd.exe /c nanoparticleBuilder --latticeConstant=4.08 --radius=15 Ag.omd -o

67

NP15.omd

cmd.exe /c Dump2XYZ -i NP15.omd

The resultant coordinate data (XYZ file), can be visualized by DJMol program to generate a
dftb_in.hsd file using the DFTB+ Script Writer tool with appropriate settings, for example,
by adding a conjugate gradient method. See SetUp menu for this utility. This HSD file can
be then used to generate an optimized Ag177 cluster by executing a DFTB+ calculation. It
can be seen that this optimized cluster (See geo_end.xyz file for the data) is approximately
spherical in symmetry. The optimized structure was again visualized and used in the Script
Writer tool to make another HSD file to include instructions for Casida method (a TD-DFTB
algorithm). The essential part of this script is:

. . .

ExcitedState = Casida {

 NrOfExcitations=100

 StateOfInterest=0

 Symmetry=singlet

 WriteTransitions=no

 WriteSPTransitions=yes

 WriteMulliken=no

 WriteCoefficients=no

 WriteEigenvectors=no

 WriteTransitionDipole=no

 OscillatorWindow=0.01

}

. . .

In all the DFTB calculation, we used hyb-0-2 parameter set is used for the silver atoms. This
newly generated HSD file is submitted to a remote Linux machine using the SSH utility (See
Extra menu in the tool bar) of the DJMol and after finishing the calculation a SPX output file
was retrieved in the local machine, which contains the oscillator strengths of different
electronic excitations. It was then plotted with UV-Vis spectrum from the Tool menu to
obtain the spectrum of the molecule. A Lorentzian convolution (with 0.035 eV of full width
at half maximum) is used to obtain the spectrum as shown in the Fig.X. Note that the
absorption maximum wavelength (max) is located around 440 nm i.e. around the indigo-
blue region. By plotting molecular orbital energy levels (using MOLevels tool and with the
detailed.out file) one can seen that the Fermi level is near to 3.9 eV and band gap of this

68

cluster is negligibly small (See the inset figure in Fig. X). And it qualitatively indicates that
Ag177 behaves like a semi-metal.

Different sized nanoparticles can be constructed by applying the above said method to
study red shift property of the system. See the Fig.XX. Experimentally this is a known fact
for the Agn system (By comparing max values of clusters, we can seen that, max shifts
towards UV region if we increase the size of the nano clusters.). This can be qualitatively
justified by particle in a box analogy. Note that the diameter of Ag177 is longer than that of
the Ag13 so that its electron can move longer along its diameter (the box length). This will
reduce its E values significantly (by increasing the size of the diameter of a silver cluster, a
photon from the red region - a wavelength that corresponds to a lower energy - can cause
an electronic excitation). For experimental UV-Vis spectra, see:
https://www.sigmaaldrich.com/technical-documents/articles/materials-
science/nanomaterials/silver-nanoparticles.html.

Figure 8.1: The UV-Visible spectrum of Ag177 nanocluster as it is plotted with the UV-Vis
Spectrum tool. The vertical red line shows the oscillator strengths of electronic transitions.
The inset figure shows HOMOs (green lines) and LUMOs (red lines) of the system.

Figure 8.2: Sizes of different AG-nanoparticle and its UV

red shift of

69

nanoparticle and its UV-Vis spectrum. Note the

70

Demonstration of DJMol - 2

Frontier Orbitals of C60 Calculated with Siesta

Volumetric MO data can be made by using executing steps described in Denchar
Utility, systematically using the Siesta add-on. The Siesta add-on can be invoked by:

Execute ➤ Siesta Calculator

In this section we shall obtain the frontier orbitals of Buckminster fullerene. See the
example file Fullerene.fdf under the Siesta_Samples folder for its coordinate (note that
it is an un-optimized structure; its optimization procedure is left to the user as an
additional exercise). Since we used a molecular system in a unit cell, the default k-
point (-point) is used to represent electronic wavefunction coefficients. Note that
HOMO and LUMO coefficients are at 120 and 121’th k-points. See the Siesta Manual for
more details.

And change the main setting of the fdf file as (ie. except the coordinate as it is inserted
between, AtomicCoordinatesAndAtomSpecies block):

#--

IMPORTANT: DO NOT CHANGE SystemLabel

#--

SystemName Fullerene molecule # Descriptive name of the system

SystemLabel siesta # Short name for naming files

NumberOfAtoms 60

NumberOfSpecies 1

SpinPolarized T

WriteDenchar T

WriteWaveFunctions T

COOP.Write T

71

%block WaveFuncKpoints

 0.000 0.000 0.000 from 120 to 121 # Gamma wavefuncs Here, 120 = HOMO

%endblock WaveFuncKPoints

%block ChemicalSpeciesLabel

 1 6 C # SpeciesIndex,AtomicNumber,SpeciesLabel

%endblock ChemicalSpeciesLabel

LatticeConstant 25.0 Ang

%block LatticeVectors

 1.0 0.0 0.0

 0.0 1.0 0.0

 0.0 0.0 1.0

%endblock LatticeVectors

AtomicCoordinatesFormat Ang # Format for coordinates

%block AtomicCoordinatesAndAtomicSpecies

. . .

%endblock AtomicCoordinatesAndAtomicSpecies

WriteEigenvalues T

For the following parameters, default value is ok.

MeshCutoff 100. Ry # Mesh cutoff. real space mesh (Ry)

PAO.BasisType split # Type of PAO basis set

PAO.EnergyShift 50 meV

PAO.BasisSize DZ # with polarization

SCF options

MaxSCFIterations 60 # Maximum number of SCF iter

72

DM.MixingWeight 0.1 # New DM amount for next SCF cycle

DM.Tolerance 1.d-4 # Tolerance in maximum difference

 # between input and output DM

DM.NumberPulay 3

DM.UseSaveDM F # to use continuation files

MD.USeSaveXV F

NeglNonOverlapInt false # Neglect non-overlap interactions

SolutionMethod diagon # OrderN or Diagon

ElectronicTemperature 6 K # Temp. for Fermi smearing (Ry)

XC.Functional GGA

XC.Authors PBE

From this we can seen that, a double zeta type basis is used along with the PBE
functional for the DFT calculation. A cubic box of 25 Å lengths is used to place the
molecule.

Run the calculation as usual and after finishing the run, plot MO energy levels, using
MO Energies, which also indicate the level of HOMO (from the first occupied level,
which is level 1):

73

Then using, Edit denchar3D.fdf option insert the below text therein, and execute its
next step, which is Run Denchar. After finishing View 2D/3D Files buttons can be
clicked to view orbitals. Please see the next figures for the MOs of HOMO and LUMO
(MO level, 120 and 121, respectively).

#--

Note: It is a Sample Script only

You have to Modify this according

to your system/requirement

See the Manual for more details

#--

Denchar.TypeOfRun 3D

Denchar.PlotCharge T # If .true. SystemLabel.DM must be present

Denchar.PlotWaveFunctions T # If .true. SystemLabel.WFSX must be present

Denchar.CoorUnits Ang

Denchar.DensityUnits Ele/Ang**3

set the mesh for wavefunction plot

Denchar.NumberPointsX 100

Denchar.NumberPointsY 100

Denchar.NumberPointsZ 100

Denchar.MinX -12.5 Ang

Denchar.MaxX 12.5 Ang

Denchar.MinY -12.5 Ang

Denchar.MaxY 12.5 Ang

Denchar.MinZ -12.5 Ang

Denchar.MaxZ 12.5 Ang

74

%block ChemicalSpeciesLabel

 1 6 C # Species index, atomic number, species label

%endblock ChemicalSpeciesLabel

Figure 8.3: Using -point Siesta’s SCF calculations yields MO coefficients. Here 120’th
wavefunction at the -point (alias MO-120) is HOMO (upper figure) and MO-121 is
LUMO. The qualities can be adjusted with Denchar parameter settings.

75

Demonstration of DJMol - 3

OpenMD MD simulation of Gold-nanoparticle

In this demonstration, we would obtain the gold-gold atom pair distribution function
from the OpenMD molecular dynamics trajectory. One can open OpenMD tool by:

Execute ➤ OpenMD Tool

In first we have to construct a Au-nanoparticle (with icosahedron symmetry). A basic
starting script for the calculation is given below (its file name is gold.omd, and note
HTML styled tags in it)

<OpenMD>

 <MetaData>

molecule{

name = "Au";

atom[0]{

type = "Au";

position(0.0, 0.0, 0.0);

 }

}

component{

type = "Au";

nMol = 1;

}

forceField = "SC";

forceFieldFileName = "SuttonChen.QSC.frc";

76

 </MetaData>

</OpenMD>

Using the command (in the OpenMD tool’s command shell window) save the file,
gold.omd ,with the above data.

cmd.exe /c notepad.exe gold.omd

Then run the following commands one after another:

cmd.exe /c .\icosahedralBuilder.exe -o file.omd --shell=8 --
latticeConstant=4.08 --ico gold.omd

cmd.exe /c Dump2XYZ -i file.omd

cmd.exe /c more file.xyz

If everything is correct you will get a gold-nanoparticle structure as shown in the
below figure-a. The above procedure construct a file called, file.omd which contains all
the XYZ data of the nanoparticle.

However in order to start an MD run, we need initial velocities. For the purpose please
run the command:

cmd.exe /c .\thermalizer -t 5 -o file-5K.omd file.omd

It will create a new file, file-5K.omd with new initial velovities and 5 Kelvin as its target
temperature. Its main parameters are:

forceField = "SC";

forceFieldFileName = "SuttonChen.QSC.frc";

ensemble = "LHull";

targetTemp = 5;

targetPressure = 1;

viscosity = 0.1;

77

dt = 2.0;

runTime = 2E5;

sampleTime = 500.0;

statusTime = 4;

seed = 985456376;

usePeriodicBoundaryConditions = "false";

tauThermostat = 1E3;

tauBarostat = 5E3;

Then run the actual OpenMD molecular dynamics run as,

cmd.exe /c openmd file-5K.omd

This may take a while (2 hour), and its trajectory information will stored in the dump
file. From this MD animation can be retrived as:

cmd.exe /c Dump2XYZ -b -i file-5K.dump

Moreover, from the below figure one can see that the 5K thermalization is achieved in the
MD run (note its convergence to 5K)

After that, a script utility to retrieve, gAu-Au((r), as:

78

cmd.exe /c StaticProps.exe -i file-5K.dump --gofr --
sele1="select Au*" --sele2="select Au*"

Figure 8.4: Pair correlation function (g(r)) obtained from the MD trajectory data which use
only test-level parameters. Note the similarity with g(r) obtained by a hard-sphere model
(inset figure courtesy, J. Nanopart. Res, 13, 4277 (2011).)

Figure 8.5: The initial (top) and final (bottom) snapshot of the MD run. Note that the
system’s initial temperature was 0K and it was equilibrated to 5K during the MD run.

79

Demonstration of DJMol - 4

ASE simulation of an adatom diffusion

Here we use ASE to obtain the energy profile of a physical process - diffusion of an
adatom or adsorbed atom (Au) on the top of a metallic surface of Al atoms. Nudged
elastic band (NEB) method is used for the calculation, in which an initial structure
(where an adatom i.e. gold atom is placed in the left side) and a final structure (adatom
is placed in the right side) of the process is used as its input data. For more details
please visit ASE tutorial web page. Note that we used EMT calculators (it is a really fast
albeit highly approximated potential function) for this calculation however one can use
Siesta within ASE to obtain more realistic diffusion barrier.

Refer Chapter-5 for creating a Python Project. Then add an Empty module
(InitialFinalStructure.py fie) into the src directory. Then add the following Python
source into it:

from ase.build import fcc100, add_adsorbate
from ase.constraints import FixAtoms
from ase.calculators.emt import EMT
from ase.optimize import QuasiNewton

3x3-Al(001) surface with 3 layers and an
Au atom adsorbed in a hollow site:
slab = fcc100('Al', size=(3, 3, 3))
add_adsorbate(slab, 'Au', 1.7, 'hollow')
slab.center(axis=2, vacuum=4.0)

Fix second and third layers:
mask = [atom.tag > 1 for atom in slab]
slab.set_constraint(FixAtoms(mask=mask))

Use EMT potential:
slab.calc = EMT()

Initial state:
qn = QuasiNewton(slab, trajectory='initial.traj')
qn.run(fmax=0.05)

Final state:
slab[-1].x += slab.get_cell()[0, 0] / 3
qn = QuasiNewton(slab, trajectory='final.traj')
qn.run(fmax=0.05)

Then Run the file (Run ► Run File). This will create, initial.traj and final.traj files which
contains the initial and final structure respectively.

After this, the NEB calculation can be started (don’t forget to create a new Python file
for this) and its Python source is given below:

80

To change this license header, choose License Headers in Project
Properties.
To change this template file, choose Tools | Templates
and open the template in the editor.
from ase.io import read
from ase.constraints import FixAtoms
from ase.calculators.emt import EMT
from ase.neb import NEB
from ase.optimize import BFGS

initial = read('initial.traj')
final = read('final.traj')

constraint = FixAtoms(mask=[atom.tag > 1 for atom in initial])

images = [initial]
for i in range(9):
 image = initial.copy()
 image.calc = EMT()
 image.set_constraint(constraint)
 images.append(image)

images.append(final)

neb = NEB(images)
neb.interpolate()
qn = BFGS(neb, trajectory='neb.traj')
qn.run(fmax=0.05)

The energy profile can be saved in a PNG image by using the following script:

import matplotlib.pyplot as plt
from ase.neb import NEBTools
from ase.io import read

images = read('neb.traj@-11:')

nebtools = NEBTools(images)

Get the calculated barrier and the energy change of the reaction.
Ef, dE = nebtools.get_barrier()

Get the barrier without any interpolation between highest images.
Ef, dE = nebtools.get_barrier(fit=False)

Get the actual maximum force at this point in the simulation.
max_force = nebtools.get_fmax()

Create a figure like that coming from ASE-GUI.
fig = nebtools.plot_band()
fig.savefig('diffusion-barrier.png')

Create a figure with custom parameters.
fig = plt.figure(figsize=(5.5, 4.0))
ax = fig.add_axes((0.15, 0.15, 0.8, 0.75))
nebtools.plot_band(ax)
fig.savefig('diffusion-barrier.png')

81

Finally, the neb.traj file, which contains the entire geometry of the process in binary
format, is then used to obtain XYZ format by the following script:

import matplotlib.pyplot as plt
from ase.calculators.emt import EMT
from ase.neb import NEB
from ase.optimize import BFGS
from ase.io import read, write
import os

read the last structures (of 5 images used in NEB)
images = read('neb.traj@-11:')

for i in range(0, len(images)):
 atoms = images[i]
 #print(atoms.get_positions())
 write('delete.xyz', atoms)
 inFile = open(os.path.join('delete.xyz'), 'r')
 fileStr = inFile.read()
 outFile = open("neb_movie.xyz", 'a')
 outFile.write(fileStr)

@type outFile
outFile.close()
inFile.close()

Additionally, using DJMol's xyz File loader (File►Open Structure) the geometries of the
process as it is saved in "neb_movie.xyz" can be displayed or animated (See the below
figure).

Figure 8.6: Diffusion of gold atom over the aluminium surface (FCC) from one hollow site
to another, in different perspectives; Nine NEB images were used for this NEB profile.

82

Figure 8.7: Starting (I) and ending (F) geometries of the Diffusion of gold atom; The
diffusion barrier (around 0.35 eV) is shown in the inset.

83

APPENDICES

84

Appendix-A

PYTHON SCRIPTING FOR DJMOL APPLICATIONS

Since DJMol uses Python for its scripting (and in ASE), a basic knowledge of Python (version
3) is highly appreciated. This appendix is based on the book, Think Python 2nd Edition by
Allen B. Downey (Creative Commons Attribution-NonCommercial 3.0 Unported License).
Some familiarity with programming is assumed for this appendix.

How to use Python within the DJMol?

To use DJMol, Python is a mandate tool and it should be installed. For this, you have to
install the Python (windows version 3 or later) immediately after the installation of the
DJMol program into your system. See Appendix - 3 for its details (including the details of
running a python in the DJMol)

Basics of python scripting

Python is designed as an interpreter language and it is widely used in scripting purposes. It
supports both procedural and object-oriented paradigm.

Variable assignment and Operators

In Python variable assignment is performed by, = operator. It also provides
operators, which are special symbols that represent operations like addition or
multiplication. The operators +, -, /, and * perform addition, subtraction, division, and
multiplication, respectively. And the operator ** performs exponentiation; that is, it raises
a number to a power. An illustration (hopefully self-explanatory!) of these commands are
following (here, >>> string represents a command prompt; for the comment one can use
#).

85

>>> x=5

>>> x

5

>>> x+2 # a comment

7

>>> x-2

3

>>> x*2

10

>>> x**2

25

>>> x%2

1

>>> x/2

2.5

Note that in numerical computation one need to use integers and decimals. Though it
doesn't require explicit declaration of type of the variables, there may be times when you
want to specify the type of a variable. This can be done with casting operation.

Casting in python is therefore done using constructor functions:

● int() - constructs an integer number from an integer literal, a float literal (by
rounding down to the previous whole number), or a string literal (providing the
string represents a whole number)

● float() - constructs a float number from an integer literal, a float literal or a string
literal (providing the string represents a float or an integer)

86

● str() - constructs a string from a wide variety of data types, including strings,
integer literals and float literals

>>> a=1

>>> type(a)

<class 'int'>

>>> b=3.1415

>>> type(b)

<class 'float'>

>>> a+b

4.141500000000001

>>> b**b

36.45491472872008

>>> y = int(2.8)

>>> y

2

>>> x = float(1)

>>> x

1.0

87

>>> z = float("3")

>>> z

3.0

String, List, Methods etc.

Apart from int, string type is also used in python. Its initiation is simple (you can use either
‘ or “ to make string):

>>> my_string = 'thisStringI'

>>> my_string

'thisString'

>>> my_string = "thisString"

>>> my_string

'thisString'

Like a string, a list is a sequence of values (perhaps it may be the Pythons most important
built-in data type; unlike C or Fortran python does not have an Array data type). In a string,
the values are characters; in a list, they can be any type. The values in a list are called
elements or sometimes items. There are several ways to create a new list; the simplest is
to enclose the elements in square brackets:

>>> a = 'is'

>>> b = 'nice'

>>> my_list = ['my', 'list', a, b]

88

>>> my_list2 = [[4,5,6,7], [3,4,5,6]]

>>> my_list[0]

'my'

Note that a list can be used as an Array (and its index starts from 0 and not from 1, like a C
array).

List Manipulation Rules

>>> my_list[0]

'my'

>>> my_list[1:3]

['list', 'is']

>>> my_list[1:]

['list', 'is', 'nice']

>>> my_list[:3]

['my', 'list', 'is']

>>> my_list[:]

['my', 'list', 'is', 'nice']

Select the first item

Select items at index 1 and 2

Select items after index 0

Select items before index 3

Copy my_list

89

List Operations

>>> my_list + my_list

['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

>>> my_list * 2

['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice']

Methods for the Lists

The Methods are equivalent to functions/subroutines; Since the List is an object a method
for that list is called by a DOT (.) operator immediately after the Object name, as it is
illustrated below:

>>> my_list.index(a)

2

>>> my_list.count(a)

1

>>> my_list.append('NewOne')

>>> my_list

['my', 'list', 'is', 'nice',
'NewOne']

>>> my_list.remove('is')

Get the index of an item

Count an item

Append an item at a time

It shows the appended List

90

>>> my_list

['my', 'list', 'nice',
'NewOne']

Remove an Item from the list

Libraries

In Python a good collection of libraries are available say, for doing math, or to do
string/array manipulation, Numerical computations, graphics etc.

The math library of python can be imported like:

>>> import math

>>> math.sqrt(9.99)

3.1606961258558215

For ASE scripting, most of the times you need to use NumPy and Scipy libraries (and it is
not shipped with standard Python, so one needs to install it, see the next appendix). If you
installed NumPy you can call it like:

>>>import numpy

Or

>>>import numpy as np

Importing NumPy Lib.

Constructing an Array

91

>>> Array=np.array([[1, 2],
[3, 4]])

>>> Array

array([[1, 2],

 [3, 4]])

>>> np.transpose(Array)

array([[1, 3],

 [2, 4]])

>>> Array.dot(Array)

array([[7, 10],

 [15, 22]])

Print that Array

Transpose of the Matrix

Matrix Multiplication

Basics of ASE scripting

Hopefully one can be now understood ASE scripting. A sample ASE script is given below
with some explanations. The aim is to calculate N2 molecular energy with EMT calculator
(Effective Medium Potential, a crude empirical model generally used for testing purposes
or for very large scale MD). Note that the following code has six lines (didn’t use line-
breaker)

from ase import Atoms

from ase.calculators.emt import
EMT

Import Atoms object

Import EMT

92

d = 1.1 # Bond Length in Angstrom

molecule = Atoms('2N', [(0., 0.,
0.), (0., 0., d)])

molecule.set_calculator(EMT())

e_molecule =
molecule.get_potential_energy()

print ('Nitrogen molecule energy:
%5.2f eV' % e_molecule)

Define a molecule with Atoms
Object

That molecule is attached with
EMT

Calculate PE

(this Really invoke the EMT
calculations)

Printing the PE

Note that the important step is to create the
Everything else is based on this Atoms object (
to this object to get DFT total energy).

A little more advanced example is following (an infinite gold wire with BL= 2.9 A)

from ase import Atoms

d = 2.9

L = 10.0

wire = Atoms('Au',

 positions=[[0, L
/ 2, L / 2]],

 cell=[d, L, L],

 pbc=[1, 0, 0])

Courtesy: ASE Camd

A list of generally used GET/SET methods for the Atoms Object is:

GET Methods

get_atomic_numbers()

get_initial_charges()

get_charges()

get_chemical_symbols()

get_initial_magnetic_moments()

get_magnetic_moments()

get_masses()

get_momenta()

93

Note that the important step is to create the Atoms object - which is a collection of atoms.
Atoms object (for example DFT calculators can be attached

A little more advanced example is following (an infinite gold wire with BL= 2.9 A).

GET/SET methods for the Atoms Object is:

SET Methods

get_atomic_numbers()

get_initial_charges()

get_charges()

get_chemical_symbols()

get_initial_magnetic_moments()

get_magnetic_moments()

get_masses()

get_momenta()

set_atomic_numbers()

set_initial_charges()

set_chemical_symbols()

set_initial_magnetic_moments()

set_masses()

set_momenta()

set_positions()

set_scaled_positions()

94

get_forces()

get_positions()

get_potential_energies()

get_scaled_positions()

get_stresses()

get_tags()

get_velocities()

set_tags()

set_velocities()

In essence, the Set methods are used to supply (the necessary) information for the Atoms
object, whereas Get methods are applied to get useful information (usually after setting a
calculator)

INSTALLATION OF PYTHON AND

As it is said before, one need to install Python (3.x, 64 bit) scripting language and NumPy on
the system before the DJMol installation.

Using this tutorial, one is expected to get sufficient information on how to install a
version of python 3and NumPy on a Windows

 I. Python Installation

1) First, download a 64 bit version of any 3.7.x from python.org. Clicking on
the following link automatically downloads the required python

https://www.python.org/ftp

2) Install the above file with <
installation and check all the boxes in the Optional Features window.

95

Appendix-B

YTHON AND NUMPY

As it is said before, one need to install Python (3.x, 64 bit) scripting language and NumPy on

Using this tutorial, one is expected to get sufficient information on how to install a 64 bit
WindowsSystem.

1) First, download a 64 bit version of any 3.7.x from python.org. Clicking on
the following link automatically downloads the required python

https://www.python.org/ftp/python/3.7.2/python-3.7.2.exe

2) Install the above file with <pip> support, and for that select custom
installation and check all the boxes in the Optional Features window.

Note: don't forget to check (See next figure) “
variables” for accessing python using the command prompt.

Python Modules Installations

After installing 3.X Python in Windows, you can simply open a command window (using
Administrative privilege) and type:

python -m pip install numpy
python -m pip install scipy
python -m pip install ase==3.17.0
python -m pip install matplotlib

To install numpy, scipy, ase and matplotlib
except for ASE).

(For a specific installation you can also do:

python -m pip install nameOfPackage==x.y.z
 where x,y,z are version numbers)

96

Note: don't forget to check (See next figure) “Add Python to environment
” for accessing python using the command prompt.

After installing 3.X Python in Windows, you can simply open a command window (using

m pip install numpy
install scipy

m pip install ase==3.17.0
m pip install matplotlib

matplotlib libraries (note: it will install latest versions

nstall nameOfPackage==x.y.z ,

 II. NumPy Installation

If the above command: python -m pip install numpy
used to install the NumPy in Windows OS.

Disclaimer: Since NumPy doesn’t have an official build for windows, we’ll be downloading
an unofficial version from https://www.lfd.uci.edu/
Gohlke, Laboratory for Fluorescence Dynamics, Unive

1) Download the .whl file of NumPy using the link to your Desktop. Clicking on the
following link automatically downloads the required python
https://download.lfd.uci.edu/pythonlibs/r5uhg2lo/numpy
win_amd64.whl

If the file is not downloaded to the Desktop, Copy the <.whl> file to Desktop.

Note: If the above link is not working, goto

https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

and download the 1.16.1 version of NumPy

97

m pip install numpy fails, this method can be

Since NumPy doesn’t have an official build for windows, we’ll be downloading
https://www.lfd.uci.edu/ which is maintained by Christoph

Gohlke, Laboratory for Fluorescence Dynamics, University of California, Irvine.

1) Download the .whl file of NumPy using the link to your Desktop. Clicking on the
following link automatically downloads the required python
https://download.lfd.uci.edu/pythonlibs/r5uhg2lo/numpy-1.16.1+mkl-cp37-cp37m-

If the file is not downloaded to the Desktop, Copy the <.whl> file to Desktop.

https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

NumPy (Not Numpy-quaternion).

2) Then run command prompt as administrator: Type <cmd> in start menu and right click
on command prompt and click on “Run as administrator

3) Navigate to your Desktop where the <.whl> file is saved. Type the following
command in your command prompt and press Enter.

cd %systemdrive%\users\

Or manually find your Desktop path and enter like:

cd C:\Users\staff\Desktop

4) Install NumPy using the <.whl> file; Type this command in your command
prompt and press Enter.

pip install "numpy-1.16.0+mkl

98

Then run command prompt as administrator: Type <cmd> in start menu and right click
Run as administrator” (See the next figure).

3) Navigate to your Desktop where the <.whl> file is saved. Type the following
in your command prompt and press Enter.

\%username%\Desktop

Or manually find your Desktop path and enter like:

Desktop

4) Install NumPy using the <.whl> file; Type this command in your command

1.16.0+mkl-cp37-cp37m-win_amd64.whl"

WINDOWS SUBSYSTEM

For more advanced scripting/calculations one may want to use a real Linux operating
system (instead of Cygwin emulators) in conjunction with
in the Windows 10 OS. It will give a real Linux OS and hence it guarantees a cent
percentage of portability of C/C++ or Fortran codes into the Windows system.

Herein we give a short description of invoking of WSL in the DJM
that you already have a WSL in your PC; otherwise it can be freely downloaded from
Microsoft store, visit: https://docs.microsoft.com/en

(a) Setting up the WSL

1. Update the Linux packages being used by WSL with the following commands in

your WSL Ubuntu command window:

 sudo apt update

sudo apt upgrade

sudo apt install unzip

sudo apt install ssh

99

Appendix-C

UBSYSTEM LINUX IN DJMOL

For more advanced scripting/calculations one may want to use a real Linux operating
system (instead of Cygwin emulators) in conjunction with DJMol. For this one can use WSL
in the Windows 10 OS. It will give a real Linux OS and hence it guarantees a cent
percentage of portability of C/C++ or Fortran codes into the Windows system.

Herein we give a short description of invoking of WSL in the DJMol platform (by assuming
that you already have a WSL in your PC; otherwise it can be freely downloaded from

https://docs.microsoft.com/en-us/windows/wsl/install-win10

by WSL with the following commands in

2. Your Windows installation is probably already using port 22 for its SSH server, we need
to change WSL’s SSH server to listen to a different port.

sudo nano /etc/ssh/sshd_config

Change the lines:

What ports, IPs and protocols we listen for

Port 22

to

Port 2222

100

2. Your Windows installation is probably already using port 22 for its SSH server, we need
WSL’s SSH server to listen to a different port.

sudo nano /etc/ssh/sshd_config

What ports, IPs and protocols we listen for

The WSL SSH server is initially set up to use key files for authentication.

To allow authentication with passwords, change:

Change to no to disable tunnelled clear text passwords

PasswordAuthentication no

to

PasswordAuthentication yes

Use Ctrl-o to save the file. Use Ctrl-x to exit the nano text editor.

101

The WSL SSH server is initially set up to use key files for authentication.

To allow authentication with passwords, change:

Change to no to disable tunnelled clear text passwords

PasswordAuthentication no

PasswordAuthentication yes

to exit the nano text editor.

3. Before using the WSL SSH server you must stop and restart the SSH server. You will
perform this step every time that you use WSL as the remote host from NetBeans. I suggest
placing the command in a script file that you can execute.

nano startssh.sh

Insert the following text into the script file:

sudo service ssh --full-

Use Ctrl-o to save the file. Use Ctrl-x to exit the nano text editor.

Back at the command line, use the following command to mark the script file as
executable:

chmod a+x startssh.sh

102

L SSH server you must stop and restart the SSH server. You will
perform this step every time that you use WSL as the remote host from NetBeans. I suggest
placing the command in a script file that you can execute.

-restart

to exit the nano text editor.

Back at the command line, use the following command to mark the script file as

To restart the SSH server, use the following command:

./startssh.sh

(b) Setting up the Netbeans IDE

1. Open the Terminal and invoke the Terminal as:

Window → IDE Tools → Terminal

103

restart the SSH server, use the following command:

1. Open the Terminal and invoke the Terminal as:

Terminal

2. Create New Remote Terminal Tab.

3. Enter your credentials.

User : <your-username>

Host : localhost

104

SSH Port : 2222

Click OK.

4. Choose Password.

5. Enter your Linux Password.

105

Click OK.

#Recommended: Check Remember Password box.

The process is finished; Now one can use WSL in DJMol.

106

#Recommended: Check Remember Password box.

Now one can use WSL in DJMol.

107

108

Appendix-D

SAVED DATA

DJMol generate a number of text based temporary data, and these are nothing but a set of
post-processing data from various visualizers or converters were temporarily stored in
different directories and it can be used for a numerical comparison (for example, how MO
levels of DFTB+ are different from that of Siesta for a given molecule). A list of such
selected post processed files with its description is shown in the Table 1.

PESScan\2DPESscanmovie.xyz

PESScan\2DPESscan.dat

PESScan\View2DPES.dat

SCRATCH\MODFTB.dat

SCRATCH\MOSiesta.dat

SCRATCH\ForceDFTB.dat

SCRATCH\ForceSiesta.dat

SCRATCH\SCFSiesta.txt

SCRATCH\Uvdata_2.csv

SCRATCH\Uvdata_1.csv

SCRATCH\MDDFTBmovie.xyz

SCRATCH\TotalMD.dat

SCRATCH\KineticMD.dat

SCRATCH\PotentialMD.dat

SCRATCH\VelocityAC.out

SCRATCH\DipoleAC.out

SCRATCH\StdOrientation.xyz

Geometries of molecules used for the PES

Energies and geometries of the PES

Coordinates (initial, final step size) and PES energy

MO energies in DFTB+

MO energies in Siesta

Cartesian Force components in DFTB+

Cartesian Force components in Siesta

SCF convergence in Siesta

Fitted UV-Vis data

UV-Vis oscillator strength for the spectrum

Trajectory of MD in XYZ animation format

Total energies of MD run

Kinetic energies of MD run

Potential energies of MD run

IR spectrum from MD using velocity autocorrelation

IR spectrum from MD using dipole moment
autocorrelation

Standard orientation of the given molecule

109

SCRATCH\MullikenDFTB.dat

Input\dftb_in.hsd

Input\siestaTEMP.fdf

ModesBinary\modes_in.hsd

ModesBinary\waveplot_in.hsd

ModesBinary\modes.xyz

ModesBinary*.cube

SiestaApp\SiestaBinary.4.0CygWin64*.cube

SiestaApp\SiestaBinary.4.0.CygWin64\SiestaVibModes.xyz

SiestaApp\SiestaBinary.4.0.CygWin64\BAND.bands

SiestaApp\SiestaBinary.4.0.CygWin64\wannier.bands

SiestaApp\SiestaBinary.4.0.CygWin64\wannier_*.xsf

OpenMD\.

Database\.

Mulliken charges from DFTB+

DFTB+ script writer out file

Siesta script writer out file

DFTB+ file used to construct vibrational data

DFTB+ file used to construct MO and its density data

DFTB vibrational modes and frequencies

DFTB Cube files for MOs and Densities

Siesta Cube files

Siesta vibrational modes and frequencies

Siesta (DFT) bands

Siesta Wannier bands

Siesta Wannier orbitals

All OpenMD in and out files

All downloaded Structural files from online
repositories

110

Appendix-E

DEMONSTRATION VIDEOS

Please visit: https://www.youtube.com/channel/UCNczegqwli6gnuo6eqNJSPg for
Demo videos. The list is (as of October 2020):

 ▶ Windows OpenMP settings | Executing Stand-alone DFTB+
 ▶ DJMol Demo on Point Group Symmetry Detection
 ▶ Running a DFTB Calculation from DJMol
 ▶ Phonon Density of States (DOS) of Aluminium Bulk: DJMol + ASE Python Scripting
 ▶ PES demo in DJMol (Linux)
 ▶ Demo on Molecular Vibration of Water Molecule
 ▶ Demo on Partial Charges And File Conversions
 ▶ Generating/Displaying Molecular Orbitals in DJMol
 ▶ DFTB+ Input script Writer in DJMol
 ▶ DJmol/Netbeans : How to install ASE, Matplotlib with PIP
 ▶ Adding Python Plugin in Netbeans or in DJMol
 ▶ Siesta's Charge density and/or electronic wave functions: 2D Contours/Surfaces
 ▶ Siesta's Charge density and/or electronic wave functions: 3D cube files
 ▶ Remote Submission using SSH tool in DJMol (64v)
 ▶ Band diagram and DOS (density of state) plot of Aluminum FCC
 ▶ Molecular Dynamics Analysis
 ▶ UV-visible spectrum in DJMol
 ▶ Z-Matrix Structure Editor of DJMol
 ▶ Wannier AddOn in DJMol (with Siesta)
 ▶ DJMol Win64 Installation from its ZIP distribution File
 ▶ DJMol Version Control with Github
 ▶ Terminal use in DJMol
 ▶ Building of DJMol with Netbeans 8.2 (Win64OS)
 ▶ Radial Distribution Function from ASAP MD Calculation in the DJMol System
▶ Burning of iso-octane fuel at 2500 K (molecular dynamics with DFTB+).

111

Appendix-F

COMPILING/INSTALLATION OF

DJMOL AND ADD-ONS

General Information

A familiarity with programming using Netbeans IDE is assumed. All of the DJMol
Program was compiled by using Netbeans IDE, v 8.2 (64bit) in Windows 64 OS. This
program and all other mandate packages for compiling the software are available at
free of cost and to download these packages please see:
http://www.djmol.info/download.html

The needed Packages are:

 JAVA 1.8 (jdk-8u201-windows-x64.exe)
 Netbeans 8.2 (netbeans-8.2-javaee-windows.exe)
 Python plug-in (2017-08-29-nbpython-nbms.zip)
 Python 3.7.2 (python-3.7.2-amd64.exe)
 Pip script (get-pip.py)
 Numpy (numpy-1.16.0+mkl-cp37-cp37m-win_amd64.whl)

We also used (64 bit) the following Python packages with version numbers:

 SciPy (scipy 1.2.1)
 ASE (ASE 3.17.0)
 Matplotlib (Matplotlib 3.0.3)

And these programs can be downloaded by using pip (use pip3) using a command
window.

[A] Compiling Main Program, <DJMolplatform>

[1] Open the Project Directory, <DJmol Platform v2.1> and Compile and Build
DJMol program. See the YouTube channel for its demonstration.

[2] Then make a Zip Distribution (by Selecting project <DJmol Platform v2.1>
followed by selecting <Package as>, <Zip Distribution>). A new <dist>
folder will be created and it holds the Zip file.

112

[B] Installing Program, <DJMolplatform>

[3] Go to <dist> folder and unzip the file and Copy all the files/folders from
the <Auxiliary> folder into <dist\djmolplatform1>. This is shown in the
demonstration.

[4] Go to <dist\djmolplatform1\etc> and replace the following line in the
<djmolplatform1.CONF> file:

 default_options="--branding djmolplatform1 -J-Xms24m -J-Xmx64m" to

 default_options="--branding djmolplatform1 -J-Xms240m -J-Xmx640m"

[5] To adjust the Resolution of the program Right click on
<djmolplatform164.exe> then move to <Compatibility> tab and click on
<Change high DPI settings> and Select the option "Override high DPI
scaling behavior".

[6] Follow the instruction in the PathVariablesSetting.pdf file.

DJMol program can be now simply executed by double clicking
<djmolplatform164.exe> which is located in <bin> folder.

Note that for the First Time of the execution, you may want to select, <Disable
Modules and Continue> option. To fix this, you can try to clean your user-directory as
it is mentioned in http://wiki.netbeans.org/FaqWhatIsUserdir

And once the application starts do the following (not mandate but it is useful):

Close <Start Page>

Close <Services>

Add <Windows -> Favorites>

Add <Windows -> Output>

[B] Compiling Add-On Programs

See <AddOns_compilation.txt> in Add-On directory.

113

